#A. 「一本通 3.1 例 1」黑暗城堡

    Type: Default 1000ms 512MiB

「一本通 3.1 例 1」黑暗城堡

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

题目描述

你知道黑暗城堡有 NN 个房间,MM 条可以制造的双向通道,以及每条通道的长度。

城堡是树形的并且满足下面的条件:

DiD_i 为如果所有的通道都被修建,第 ii 号房间与第 11 号房间的最短路径长度;

SiS_i 为实际修建的树形城堡中第 ii 号房间与第 11 号房间的路径长度;

要求对于所有整数 ii (1iN1\le i\le N),有 Si=DiS_i= D_i 成立。

你想知道有多少种不同的城堡修建方案。当然,你只需要输出答案对 23112^{31} -1 取模之后的结果就行了。

输入格式

第一行为两个由空格隔开的整数 N,MN, M;

第二行到第 M+1M+1 行为 33 个由空格隔开的整数 x,y,lx, y, l:表示 xx 号房间与 yy 号房间之间的通道长度为 ll

输出格式

一个整数:不同的城堡修建方案数对 23112^{31} -1 取模之后的结果。

样例

4 6
1 2 1
1 3 2
1 4 3
2 3 1
2 4 2
3 4 1
6

一共有 44 个房间,66 条道路,其中 11 号和 22 号,11 号和 33 号,11 号和 44 号,22 号和 33 号,22 号和 44 号,33 号和 44 号房间之间的通道长度分别为 112233112211

而不同的城堡修建方案数对 23112^{31} -1 取模之后的结果为 66

数据范围与提示

对于全部数据,1N1000 1\le N\le 1000 1MN(N1)2 1\le M\le \frac{N(N-1)}{2} 1l2001\le l\le 200