#H. 「一本通 3.7 练习 6」原始生物

    Type: Default 3000ms 128MiB

「一本通 3.7 练习 6」原始生物

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

题目描述

原题来自:POI 1999

原始生物的遗传密码是一个自然数的序列 K=(a1,,an)K=(a_1,\cdots,a_n)。原始生物的特征是指在遗传密码中连续出现的数对 (l,r)(l,r),即存在自然数 ii 使得 l=ail=a_ir=ai+1r=a_{i+1}。在原始生物的遗传密码中不存在 (p,p)(p,p) 形式的特征。

求解任务,请设计一个程序:

  • 读入一系列的特征。

  • 计算包含这些特征的最短的遗传密码。

  • 将结果输出

输入格式

第一行是一个整数 nn ,表示特征的总数。在接下来的 nn 行里,每行都是一对由空格分隔的自然数 llrr 。数对 (l,r)(l,r) 是原始生物的特征之一。输入文件中的特征不会有重复。

输出格式

唯一一行应该包含一个整数,等于包含了输入文件中所有特征的遗传密码的最小长度。

样例

12
2 3
3 9
9 6
8 5
5 7
7 6
4 5
5 1
1 4
4 2
2 8
8 6
15

输入文件中的所有特征都包含在以下遗传密码中:

(8,5,1,4,2,3,9,6,4,5,7,6,2,8,6)(8, 5, 1, 4, 2, 3, 9, 6, 4, 5, 7, 6, 2, 8, 6)

数据范围与提示

1l,r10001 \le l,r \le 1000

欧拉回路

Not Claimed
Status
Done
Problem
8
Open Since
2024-3-23 11:15
Deadline
2024-4-28 23:59
Extension
24 hour(s)