ARC106D - Powers
You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.
Score : 600 points
Problem Statement
Given are integer sequence of length N, A=(A1,A2,⋯,AN), and an integer K.
For each X such that 1≤X≤K, find the following value:
(L=1∑N−1R=L+1∑N(AL+AR)X)mod998244353
Constraints
- All values in input are integers.
- 2≤N≤2×105
- 1≤K≤300
- 1≤Ai≤108
Input
Input is given from Standard Input in the following format:
N K A1 A2 ⋯ AN
Output
Print K lines.
The X-th line should contain the value (L=1∑N−1R=L+1∑N(AL+AR)X)mod998244353.
Sample Input 1
3 3 1 2 3
Sample Output 1
12 50 216
In the 1-st line, we should print (1+2)1+(1+3)1+(2+3)1=3+4+5=12.
In the 2-nd line, we should print (1+2)2+(1+3)2+(2+3)2=9+16+25=50.
In the 3-rd line, we should print (1+2)3+(1+3)3+(2+3)3=27+64+125=216.
Sample Input 2
10 10 1 1 1 1 1 1 1 1 1 1
Sample Output 2
90 180 360 720 1440 2880 5760 11520 23040 46080
Sample Input 3
2 5 1234 5678
Sample Output 3
6912 47775744 805306038 64822328 838460992
Be sure to print the sum modulo 998244353.
ARC106
- Status
- Done
- Rule
- IOI
- Problem
- 6
- Start at
- 2023-7-5 8:15
- End at
- 2023-7-5 10:15
- Duration
- 2 hour(s)
- Host
- Partic.
- 13