#P1864H. Asterism Stream

Asterism Stream

Description

Bogocubic is playing a game with amenotiomoi. First, Bogocubic fixed an integer nn, and then he gave amenotiomoi an integer xx which is initially equal to 11.

In one move amenotiomoi performs one of the following operations with the same probability:

  • increase xx by 11;
  • multiply xx by 22.

Bogocubic wants to find the expected number of moves amenotiomoi has to do to make xx greater than or equal to nn. Help him find this number modulo 998244353998\,244\,353.

Formally, let M=998244353M = 998\,244\,353. It can be shown that the answer can be expressed as an irreducible fraction pq\frac{p}{q}, where pp and qq are integers and q≢0(modM)q \not \equiv 0 \pmod{M}. Output the integer equal to pq1modMp \cdot q^{-1} \bmod M. In other words, output such an integer yy that 0y<M0 \le y < M and yqp(modM)y \cdot q \equiv p \pmod{M}.

Each test contains multiple test cases. The first line contains the number of test cases tt (1t1001 \le t \le 100). The description of the test cases follows.

The only line of each test case contains one integer nn (1n10181 \le n \le 10^{18}).

For each test case, output a single integer — the expected number of moves modulo 998244353998\,244\,353.

Input

Each test contains multiple test cases. The first line contains the number of test cases tt (1t1001 \le t \le 100). The description of the test cases follows.

The only line of each test case contains one integer nn (1n10181 \le n \le 10^{18}).

Output

For each test case, output a single integer — the expected number of moves modulo 998244353998\,244\,353.

Sample Input 1

7
1
4
8
15
998244353
296574916252563317
494288321850420024

Sample Output 1

0
499122179
717488133
900515847
93715054
44488799
520723508

Note

In the first test case, nxn\le x without any operations, so the answer is 00.

In the second test case, for n=4n = 4, here is the list of all possible sequences of operations and their probabilities:

  • 1+12+13+141\stackrel{+1}{\longrightarrow}2\stackrel{+1}{\longrightarrow}3\stackrel{+1}{\longrightarrow}4, the probability is 18\frac{1}{8};
  • 1×22+13+141\stackrel{\times 2}{\longrightarrow}2\stackrel{+1}{\longrightarrow}3\stackrel{+1}{\longrightarrow}4, the probability is 18\frac{1}{8};
  • 1+12+13×261\stackrel{+1}{\longrightarrow}2\stackrel{+1}{\longrightarrow}3\stackrel{\times 2}{\longrightarrow}6, the probability is 18\frac{1}{8};
  • 1×22+13×261\stackrel{\times 2}{\longrightarrow}2\stackrel{+1}{\longrightarrow}3\stackrel{\times 2}{\longrightarrow}6, the probability is 18\frac{1}{8};
  • 1+12×241\stackrel{+1}{\longrightarrow}2\stackrel{\times 2}{\longrightarrow}4, the probability is 14\frac{1}{4};
  • 1×22×241\stackrel{\times 2}{\longrightarrow}2\stackrel{\times 2}{\longrightarrow}4, the probability is 14\frac{1}{4}.

So the expected number of moves is 4(318)+2(214)=52499122179(mod998244353)4 \cdot \left(3 \cdot \frac{1}{8}\right) + 2 \cdot \left(2 \cdot \frac{1}{4} \right) =\frac{5}{2} \equiv 499122179 \pmod{998244353}.

In the third test case, for n=8n = 8, the expected number of moves is 13732717488133(mod998244353)\frac{137}{32}\equiv 717488133\pmod{998244353}.

In the fourth test case, for n=15n = 15, the expected number of moves is 249774096900515847(mod998244353)\frac{24977}{4096} \equiv 900515847 \pmod{998244353}.