#P1768F. Wonderful Jump

Wonderful Jump

Description

You are given an array of positive integers a1,a2,,ana_1,a_2,\ldots,a_n of length nn.

In one operation you can jump from index ii to index jj (1ijn1 \le i \le j \le n) by paying min(ai,ai+1,,aj)(ji)2\min(a_i, a_{i + 1}, \ldots, a_j) \cdot (j - i)^2 eris.

For all kk from 11 to nn, find the minimum number of eris needed to get from index 11 to index kk.

The first line contains a single integer nn (2n41052 \le n \le 4 \cdot 10^5).

The second line contains nn integers a1,a2,ana_1,a_2,\ldots a_n (1ain1 \le a_i \le n).

Output nn integers — the kk-th integer is the minimum number of eris needed to reach index kk if you start from index 11.

Input

The first line contains a single integer nn (2n41052 \le n \le 4 \cdot 10^5).

The second line contains nn integers a1,a2,ana_1,a_2,\ldots a_n (1ain1 \le a_i \le n).

Output

Output nn integers — the kk-th integer is the minimum number of eris needed to reach index kk if you start from index 11.

Sample Input 1

3
2 1 3

Sample Output 1

0 1 2

Sample Input 2

6
1 4 1 6 3 2

Sample Output 2

0 1 2 3 6 8

Sample Input 3

2
1 2

Sample Output 3

0 1

Sample Input 4

4
1 4 4 4

Sample Output 4

0 1 4 8

Note

In the first example:

  • From 11 to 11: the cost is 00,
  • From 11 to 22: 121 \rightarrow 2 — the cost is min(2,1)(21)2=1\min(2, 1) \cdot (2 - 1) ^ 2=1,
  • From 11 to 33: 1231 \rightarrow 2 \rightarrow 3 — the cost is min(2,1)(21)2+min(1,3)(32)2=1+1=2\min(2, 1) \cdot (2 - 1) ^ 2 + \min(1, 3) \cdot (3 - 2) ^ 2 = 1 + 1 = 2.

In the fourth example from 11 to 44: 1341 \rightarrow 3 \rightarrow 4 — the cost is min(1,4,4)(31)2+min(4,4)(43)2=4+4=8\min(1, 4, 4) \cdot (3 - 1) ^ 2 + \min(4, 4) \cdot (4 - 3) ^ 2 = 4 + 4 = 8.