#P1721D. Maximum AND

    ID: 855 Type: RemoteJudge 3000ms 256MiB Tried: 0 Accepted: 0 Difficulty: 6 Uploaded By: Tags>bitmasksdfs and similardivide and conquergreedysortings*1800

Maximum AND

Description

You are given two arrays aa and bb, consisting of nn integers each.

Let's define a function f(a,b)f(a, b) as follows:

  • let's define an array cc of size nn, where ci=aibic_i = a_i \oplus b_i (\oplus denotes bitwise XOR);
  • the value of the function is c1&c2&&cnc_1 \mathbin{\&} c_2 \mathbin{\&} \cdots \mathbin{\&} c_n (i.e. bitwise AND of the entire array cc).

Find the maximum value of the function f(a,b)f(a, b) if you can reorder the array bb in an arbitrary way (leaving the initial order is also an option).

The first line contains one integer tt (1t1041 \le t \le 10^4) — the number of test cases.

The first line of each test case contains one integer nn (1n1051 \le n \le 10^5) — the size of arrays aa and bb.

The second line contains nn integers a1,a2,,ana_1, a_2, \dots, a_n (0ai<2300 \le a_i < 2^{30}).

The third line contains nn integers b1,b2,,bnb_1, b_2, \dots, b_n (0bi<2300 \le b_i < 2^{30}).

The sum of nn over all test cases does not exceed 10510^5.

For each test case print one integer — the maximum value of the function f(a,b)f(a, b) if you can reorder the array bb in an arbitrary way.

Input

The first line contains one integer tt (1t1041 \le t \le 10^4) — the number of test cases.

The first line of each test case contains one integer nn (1n1051 \le n \le 10^5) — the size of arrays aa and bb.

The second line contains nn integers a1,a2,,ana_1, a_2, \dots, a_n (0ai<2300 \le a_i < 2^{30}).

The third line contains nn integers b1,b2,,bnb_1, b_2, \dots, b_n (0bi<2300 \le b_i < 2^{30}).

The sum of nn over all test cases does not exceed 10510^5.

Output

For each test case print one integer — the maximum value of the function f(a,b)f(a, b) if you can reorder the array bb in an arbitrary way.

Sample Input 1

3
5
1 0 0 3 3
2 3 2 1 0
3
1 1 1
0 0 3
8
0 1 2 3 4 5 6 7
7 6 5 4 3 2 1 0

Sample Output 1

2
0
7