#P1104A. Splitting into digits
Splitting into digits
Description
Vasya has his favourite number . He wants to split it to some non-zero digits. It means, that he wants to choose some digits , such that for all and .
Vasya likes beauty in everything, so he wants to find any solution with the minimal possible number of different digits among . Help him!
The first line contains a single integer — the number that Vasya wants to split ().
In the first line print one integer — the number of digits in the partition. Note that must satisfy the inequality . In the next line print digits separated by spaces. All digits must satisfy the inequalities .
You should find a partition of in which the number of different digits among will be minimal possible among all partitions of into non-zero digits. Among such partitions, it is allowed to find any. It is guaranteed that there exists at least one partition of the number into digits.
Input
The first line contains a single integer — the number that Vasya wants to split ().
Output
In the first line print one integer — the number of digits in the partition. Note that must satisfy the inequality . In the next line print digits separated by spaces. All digits must satisfy the inequalities .
You should find a partition of in which the number of different digits among will be minimal possible among all partitions of into non-zero digits. Among such partitions, it is allowed to find any. It is guaranteed that there exists at least one partition of the number into digits.
Note
In the first test, the number can be divided into digit equal to .
In the second test, there are partitions of the number into digits in which the number of different digits is . This partitions are , and . Any of these partitions can be found. And, for example, dividing the number to the digits isn't an answer, because it has different digits, that isn't the minimum possible number.