
Task 1: Labels (labels)

Authored and prepared by: Ho Xu Yang, Damian

Subtask 1

Limits: N = 2

There are only 4 possible sequences of length 2: [1, 1], [1, 2], [2, 1] and [2, 2].

D = [1] can be uniquely recovered as A = [1, 2].

D = [−1] can be uniquely recovered as A = [2, 1].

D = [0] can be recovered as either A = [1, 1] or A = [2, 2], hence it is not possible to uniquely
recover A.

Time Complexity: O(1)

Subtask 2

Limits: 2 ≤ N ≤ 6

Run a recursive complete search to try all possible sequences A, and for each sequence check if
it is consistent with D. If there are multiple solutions then it is not possible to uniquely recover
A.

Time Complexity: O(NN)

Subtask 3

Limits: 2 ≤ N ≤ 103

To speed up our solution, we note that the only unknown is A1 since the rest of A can be
computed from Ai+1 = Ai +Di.

Thus, we try every possible value for A1 (i.e. 1 to N ) and compute A, before checking that
every element of A lies between 1 and N inclusive.

Time Complexity: O(N2)

NOI 2020 National Olympiad in Informatics—Singapore 1



Subtask 4

Limits: −1 ≤ Di ≤ 1

If all Di = 1, we obtain A = [1, . . . , N ].

If all Di = −1, we obtain A = [N, . . . , 1].

If all Di = 0, then A is a constant sequence and can not be uniquely recovered. This is because
we could have a sequence of all 1s, all 2s, etc.

Otherwise, let us denote the largest and smallest elements of A as Amax and Amin respectively.
Thus 1 ≤ Amin ≤ Amax ≤ N .

Since we do not have all Di = 1 nor all Di = −1, then Amax − Amin < N − 1.

If Amin > 1 then we can simply subtract 1 from all elements of A and we will get another valid
sequence A

′ that is also consistent with D.

If Amin = 1 then Amax < N , so we can simply add 1 to all elements of A and we will get
another valid sequence A

′ that is also consistent with D.

Hence, it is not possible to uniquely recover A if D is not a constant sequence.

Time Complexity: O(N)

Subtask 5

Limits: (No further constraints)

Let us define D
′

k =
∑k

i=1Di =
∑k

i=1(Ai+1 − Ai) = Ak+1 − A1.

From subtask 4, we know that if Amax − Amin < N − 1 then it is not possible to uniquely
recover A. Equivalently, we can simply check if D′max −D

′
min < N − 1.

Otherwise, we must have Amax − Amin = N − 1. Thus, Amin = 1 and Amax = N . Now,
D
′

k = Ak+1 − A1 =⇒ D
′
max = Amax − A1 =⇒ A1 = N −D

′
max.

In this manner, A1 and the rest of A can can be uniquely recovered from D.

Time Complexity: O(N)

NOI 2020 National Olympiad in Informatics—Singapore 2



Task 2: Discharging (discharging)

Authored and prepared by: Teow Hua Jun

Subtask 1

Limits: 1 ≤ N ≤ 3

The value of N is very small in this subtask, there are only 7 cases of how the N customers can
be grouped. Thus, it is possible to brute force through all the possible cases and find the case
that will yield the minimum total value.

Subtask 2

Limits:1 ≤ N ≤ 1500, Ti is in non-decreasing order

Firstly, we can change the way we count the total time spent. Instead of considering the amount
of time spent for each group, we can consider the amount of time each group costs for itself and
the remaining groups.

Note that since the values of Ti is sorted in non-decreasing order, when the customers are
divided into contiguous groups the largest Ti value of each group is the last value of each group.

Thus, the cost of the group on all customers where the group is made of contiguous customers
from index i to j (1-indexed) is Tj(N − i + 1) as (N − i + 1) is the number of customers that
are affected by the charging time of this group.

We will then need to do some dynamic programming. Let dp(x) be the total time cost among
all customers by groups that consist of customers from 1 to x, where x is the last customer of
the last group.

At each state we have to iterate through all possible lengths of the last group that ends on the
xth customer.

Leading to the transition of: dp(x) = min(dp(i− 1) + Tx(N − i+ 1)) for i ≤ x

Then our final answer would be dp(N)

Time complexity: O(N2)

Subtask 3

Limits: Ti is in non-decreasing order

The solution to this subtask requires us to speed up the solution of subtask 2. We have to speed
up the transition of the dp as for each state we would have to iterate through O(N) states.

NOI 2020 National Olympiad in Informatics—Singapore 3



Instead we can rearrange the transition of the state to get:

dp(x) = min(Tx(N + 1)− iTx + dp(i− 1)) for i ≤ x

Since Tx(N + 1) is independent of i we can pull it out of the expression to get:

dp(x) = Tx(N + 1) + min(−iTx + dp(i− 1)) for i ≤ x

From here, we can use a common dp speed up trick called the convex hull trick to plot different
lines (mx + c) with the gradients being −i and the constants being dp(i − 1), hence at every
transition we can substitute Tx as the x-coordinate and find the line that produces the minimum
value.

Since, the gradients of the lines and the x-coordinates being queried are monotonic, the lines
can be inserted in an armotised time of O(N) and the queries can be resolved in an armotised
time of O(N) as well.

Time complexity: O(N )

Subtask 4

Limits: Ti is in non-increasing order

For this subtask we need to use a observation:

Let Px be the customer with the largest value of T among customers from 1 to x. Note that in
the optimal grouping of 1 to x, Px is in the last group. This observation can be proved through
exchange argument and is left as an exercise to the reader.

Using this observation we can see that the first customer needs to be in the last group for the
total time to be minimised, hence this means that the optimal grouping is just one big group.

Thus, the answer is just T1N .

Time complexity: O(N )

Subtask 5

Limits: 0 ≤ n ≤ 1500

If we copy the solution from subtask 2 directly, it will fail as the maximum T in each group is
no longer the last customer of the group. However, we can remedy this by looping the previous
states in reverse and keeping a running maximum to find the maximum value among customer
i to x.

dp(x) = min(dp(i− 1) + max(Ti, Ti+1, ..., Tx)× (N − i+ 1)) for i ≤ x

Time complexity: O(N2)

NOI 2020 National Olympiad in Informatics—Singapore 4



Subtask 6

Limits: (No further constraints)

Note that it is difficult to apply the convex hull trick to the transition in subtask 5 as we
cannot find max(Ti, Ti+1, ..., Tx) very easily. However, we can use the observation in sub-
task 4 to resolve this issue. Since Px must be in the last group and has the largest T value,
max(Ti, Ti+1, ..., Tx) of the optimal grouping must be equal to the T value of Px. Thus, we can
substitute it into the transition and use the convex hull trick to get an armotised O(N) solution.

dp(x) = min(dp(i− 1) + TPx(N − i+ 1)) for i ≤ Px

Time complexity: O(N )

NOI 2020 National Olympiad in Informatics—Singapore 5



Task 3: Progression (progression)

Authored and prepared by: Ho Xu Yang, Damian

Introduction

In short, we have an array D of N integers and wish to carry out several operations and queries
on it:

Patch operation: Range-add [L,R] with an arithmetic progression of first term S and common
difference C

Rewrite operation: Range-set [L,R] with an arithmetic progression of first term S and common
difference C

Evaluate query: Range-query [L,R] for the length of the longest subarray that is an arithmetic
progression

Subtask 1

Limits: L = 1, R = N for all operations and queries.

Calculate the length of the longest arithmetic progression before any operations are carried out
and let this value be X .

Observe that a subarray is an arithmetic progression after a patch operation if and only if it
was already an arithmetic progression before the patch operation. To be exact, an arithmetic
progression with first term a and common difference d becomes one with first term a + S and
common difference d+ C after a patch operation.

Thus, the answer to evaluate queries will be X until the first rewrite operation, after which the
answer will become N (since the whole array will now always be an arithmetic progression).

Time Complexity: O(N +Q)

Subtask 2

Limits: 1 ≤ N,Q ≤ 103

In this subtask, the limits are small enough to allow us to implement operations directly with
for-loops. We then utilise our solution to subtask 1 to answer evaluate queries.

Time Complexity: O(NQ)

NOI 2020 National Olympiad in Informatics—Singapore 6



Subtask 3

Limits: There are no patch and rewrite operations.

Define a difference array B where Bi = Di −Di−1 for 1 ≤ i ≤ N (With D0 = 0).

Evaluate queries then reduce to finding the length of the longest constant value subarray. Build
a segment tree on B and maintain three values at each node — the longest constant value prefix,
longest constant value suffix, and longest constant value subarray, storing the length and value
of each. We shall allow prefixes and suffixes to potentially span the entire range. However,
subarrays shall be strict subarrays — neither prefixes nor suffixes.

At each node (with children left and right), we calculate the values as such:

1. prefix: either take left.prefix, or left.prefix + right.prefix (if left.prefix.length = left.length
and left.prefix.value = right.prefix.value)

2. suffix: either take right.suffix, or left.suffix + right.suffix (if right.suffix.length = right.length
and left.suffix.value = right.suffix.value)

3. subarray: take max(left.subarray, right.subarray, left.suffix, right.prefix, left.suffix + right.prefix
(if left.suffix.value = right.prefix.value)), taking care to ensure strict subarrays by limiting
the length of the prefixes/suffixes

Finally, each evaluate query can be answered by combining the appropriate ranges, and taking
max(prefix.length, subarray.length + 1, suffix.length + 1). However, it is possible that our an-
swer might exceed R − L + 1 in the case where our suffix spans the entire range and is also a
prefix. Hence we limit our answer to R− L+ 1.

Time Complexity: O(N +Q log2N)

Subtask 4

Limits: L = R for all operations.

In this subtask, all operations on D are point-updates. We note that by implementing range-sum

query, Di can be recovered by finding
i∑

x=1

Bx.

A patch operation can be implemented by adding S to BL and −S to BL+1, taking care to
recalculate the values for all affected ranges.

A rewrite operation can be implemented as a patch operation of S −DL.

Time Complexity: O(N +Q log2N)

NOI 2020 National Olympiad in Informatics—Singapore 7



Subtask 5

Limits: There are no rewrite operations.

A patch operation can be implemented by

1. Adding S to [L,L]

2. Adding C to [L+ 1, R] (if L 6= R)

3. Adding −(S + (R− L)× C) to [R + 1, R + 1] (if R 6= N )

Range-add updates can be implemented in logarithmic time with lazy propagation.

Time Complexity: O(N +Q log2N)

Subtask 6

Limits: (No further constraints)

A rewrite operation can be implemented by

1. Setting S −DL−1 to [L,L]

2. Setting C to [L+ 1, R] (if L 6= R)

3. Adjusting BR+1 so that DR+1 remains unchanged. (if R 6= N )

Range-set updates can be similarly implemented in logarithmic time with lazy propagation.

Time Complexity: O(N +Q log2N)

NOI 2020 National Olympiad in Informatics—Singapore 8



Task 4: Arcade (arcade)

Authored by: Pang Wen Yuen
Prepared by: Teow Hua Jun

Subtask 1

Limits: 1 ≤ N,M, Ti ≤ 100, 1 ≤ S ≤ 2

Since the maximum number of hands required is at most 2, it is only necessary to check if it is
possible to complete the game with 1 hand. This can be done by processing the instructions in
order of time, and at each point checking if the difference in time from the previous instruction
is less than or equal to the difference in position from the previous instruction, so that the same
hand can reach it.

Time complexity: O(N +M logM )

Subtask 2

Limits: 1 ≤ N,M, Ti ≤ 100, 1 ≤ S ≤ 3

Since the maximum number of hands required is at most 3, we can first check if it is possible to
complete the game with 1 hand using the solution outlined in Subtask 1. After which, we can
check if the game is completable with 2 hands using the dynamic programming formulation as
follows:
dp(t, a, b) = maximum number of buttons that can be pressed such that the hands are on posi-
tions a and b at time t.
The transition can be done in O(1) by checking the movements of a and b by 1 from the previous
second.

Time complexity: O((N2maxTi +M logM )

Subtask 3

Limits: 1 ≤ N,M, Ti ≤ 100, 1 ≤ S ≤ 4

Since the maximum number of hands required is at most 4, we can first check the cases of 1
hand and 2 hands using the solution in Subtask 2. The key observation in this subtask involves
optimising the DP in Subtask 2 through the fact that during a time tick where an instruction is
involved, at least one hand is surely on the button.
As such we can come up with the following DP formulation:
dp(m, a, b) = maximum number of buttons that can be pressed at time Tm such that the three
hands are in positions a, b, and AM . The transition is not O(1), but can be done in amortised

NOI 2020 National Olympiad in Informatics—Singapore 9



O(maxT 2
i ) time, by checking positions of a and b such that the difference between the new and

old positions are less than or equal to Tm − Tm−1.

Time complexity: O(N2(M +maxTi) + maxT 2
i +M logM )

Subtask 4

Limits: 0 ≤M ≤ 300

This is the first subtask where there is no limit on the answer, and it requires a completely
different approach on the problem. Imagine the instructions as points plotted on a Ai − Ti

plane.
The diagram below illustrates the sample case.

Each hand can be represented by a line heading downwards and connecting points, such that no

NOI 2020 National Olympiad in Informatics—Singapore 10



line exceeds an angle of 45 degrees from the vertical (due to the speed limit of the hands). The
problem now becomes: what is the minimum number of lines to connect all points?

This problem can be solved directly via converting it to a Maximum Cardinality Bipartite
Matching (MCBM) problem. We can see each point on this grid as having a “parent”: which is
the directly above it on the same connecting line. For example, (4, 6) will have a parent (1, 3).
Each parent can only have one child, and a parent can be connected to a child if Tparent < Tchild

and the line connecting them is within 45 degrees of the vertical. Therefore, we can construct
a bipartite graph of M nodes on each side, matching parents on the left side to children on the
right. The number of nodes that have no matchings is equal to the number of nodes with no
parent and equal to the number of lines. Therefore, the minimum number of lines required is
equal to M −MCBM .

Time complexity: O(M3 +N )

Subtask 5

Limits: 0 ≤M ≤ 15 000

This subtask uses a similar strategy to the one outlined in Subtask 4, but with a slight modifi-
cation. Instead of viewing the lines as needing to be within 45 degrees of the vertical, we can
rotate the grid 45 degrees clockwise. Now all lines must only connect points where one point is
to the bottom-left of another. We can view this grid as a DAG, with a having an edge to b if a is
to the top-right of b.

The question now becomes: how do we decompose this DAG into the minimum number of
chains such that each chain follows the edges on the DAG? By Dilworth’s Theorem, the mini-
mum partitioning of a DAG into chains is equal to the size of the maximum antichain, i.e. the
maximum size of a subset of nodes that are pairwise unreachable from one another.

In this problem, this is equivalent to the largest set of points where each point is either to the
top-left or bottom-right of all other points.This can be seen as finding a line connecting the
maximum number of points such that the line can only head bottom-right. The answer can be
found with a DP.

First, we sort the points in increasing Y ′ (the y-coordinate in this rotated grid). Then the DP
formulation is as follows:

dp(i) = maximum length of chain that ends at point i

The transition can be done in O(M), as it requires finding the maximum DP value from the set
of points that are to the top-left of itself, and extending the chain by 1.

Time complexity: O(M2 +N )

NOI 2020 National Olympiad in Informatics—Singapore 11



Subtask 6

Limits: 0 ≤M ≤ 100 000

There are several greedy approaches which utilise complex data structures which run in O(M logM)
or O(M log2M) time that do not pass Subtask 7 due to their high constant factors. They will
be able to obtain Subtask 6.

Subtask 7

Limits: (No further constraints)

The final solution directly follows from the solution outlined in Subtask 5. Note how the DP in
Subtask 5 is actually equivalent to the Longest Increasing Subsequence (LIS) problem. There-
fore, if we sort the points by Y ′, and run LIS on X ′, finding the LIS trivially will give us the
required answer

Time complexity: O(M logM +N )

NOI 2020 National Olympiad in Informatics—Singapore 12



Task 5: Aesthetic (aesthetic)

Authored and prepared by: Jeffrey Lee

Introduction

Note that the town is a weighted undirected graph, with its locations as vertices and roads as
edges. We will denote the distance between two vertices i and j as di,j .

Subtask 1

Limits: N,M ≤ 100

There are
(
M
2

)
= M(M−1)

2
distinct pairs of roads (i, j), where i < j. For each such pair, we can

construct the graph (in adjacency-list format) as it would be after j is replicated into i, and then
perform Dijkstra’s Algorithm in O(M logN) to determine the resulting d1,N . Our final answer
will be the highest d1,N found among all pairs.

Time complexity: O(M3 logN)

Subtask 2

Limits: N,M ≤ 2000

Notice that if we wanted to extend some road i by picking and replicating another road j into it,
choosing a larger Wj would increase d1,N by as much as or more than choosing a smaller Wj .
Hence, we need only consider pairs of roads (i, j) in which j has the greatest length out of all
roads more aesthetic than i.

We can precompute the largest Wj for all edges i in a total time of O(M), using a sliding
maximum from M to 1. Let us call this value the potential extension of edge i, or Pi for short.
Subsequently, for each edge i we can again construct the graph in which i is extended by Pi and
run Dijkstra’s Algorithm. Our final answer is similarly the highest d1,N among all edges i.

Time complexity: O(M2 logN)

Subtask 3

Limits: M = N − 1

Since the graph is connected and satisfies M = N − 1, it is a tree. There thus exists a unique
path between locations 1 and N ; and increasing the length of any edge i along this path by Pi

will also increase d1,N by exactly Pi, while extending any edge i not on the path will not change

NOI 2020 National Olympiad in Informatics—Singapore 13



d1,N . We can run a depth-first search traversal from vertex 1 to determine which edges are on
this path. Our answer is then the sum of d1,N and the largest Pi of these edges.

Time complexity: O(M)

Subtask 4

Limits: M = N

Since the graph is connected and M = N , the graph forms a pseudotree and has exactly one
cycle. There hence exists either one unique path or exactly two distinct paths between 1 and
N , depending on their position with respect to the cycle. Again, these two cases can be distin-
guished and the edges on the path(s) identified via depth-first search.

If there is only one path from 1 to N , we may reuse the approach of Subtask 3 to find the answer.
On the other hand, if there are two paths then extending an edge i will lengthen the path(s) using
it by Pi, while leaving the other(s) unaffected. As d1,N will be the length of the shorter of the
two paths, we can determine the maximum d1,N by trying each edge and evaluating the resulting
path lengths.

Time complexity: O(M)

Subtask 5

Limits: Wi = 1

Let us call an edge relevant iff there exists at least one shortest path from 1 to N passing through
it, and call an edge a bottleneck iff every shortest path from 1 to N passes through it. For this
subtask, we realise that d1,N can be increased by 1 if there exists an edge which we can extend
to increment all 1 → N shortest paths. In other words, our answer d′1,N is equal to d1,N + 1 if
there exists a bottleneck which is not edge M , and otherwise d′1,N = d1,N .

There are several ways to find bottlenecks. One of them works by first determining d1,i and dN,i

for all vertices i in two breadth-first searches. Then, an edge i is relevant iff d1,Ai
+1+ dBi,N =

d1,N (or d1,Bi
+ 1 + dAi,N = d1,N ; without loss of generality, we will assume the former from

here onwards). Finally, we have it that an edge i is a bottleneck iff:

• Edge i is relevant, and

• There exists no other relevant edge j such that d1,Ai
= d1,Aj

and dBi,N = dBj ,N .

This works because i must be the (d1,Ai
+ 1)th edge in every shortest path to be a bottleneck;

and the existence of such a j would require j to displace i from this position in some paths,
while the absence of such a j leaves only i to fill this position in all shortest paths.

Time complexity: O(M)

NOI 2020 National Olympiad in Informatics—Singapore 14



Subtask 6

Limits: 0 ≤ Wi ≤ 10

We can generalize the ideas introducted in the previous subtask. Let us call a walk from vertex
1 to N of length L or less an L-walk. We say an edge e is L-relevant iff e is used in at least one
L-walk, and an edge e is an L-bottleneck iff e is in every L-walk.

For this subtask, we start off with 11 possible values for our answer d′1,N : they are the integers
d1,N through d1,N +10. Using the abovementioned ideas, we can try these values one by one to
determine which of them is the actual answer.

Suppose we had some particular value L, and we were attempting to find and extend an edge
such that d1,N would increase to become strictly greater than L. Doing so would be possible iff
there exists an edge i such that:

• Edge i is an L-bottleneck, and

• d1,Ai
+Wi + Pi + dBi,N > L and d1,Bi

+Wi + Pi + dAi,N > L.

The above holds because extending an edge that satisfies both conditions lengthens all L-walks
to above length L; while extending an edge that does not satisfy either condition will respec-
tively leave behind the L-walks not passing through the edge, or fail to extend some of the
L-walks through the edge to above length L.

The values of d1,i and dN,i for all vertices i can be determined in two runs of Dijkstra’s Algo-
rithm, leaving us with the task of finding L-bottlenecks. First, we can identify all L-relevant
edges: these are the edges i which have d1,Ai

+Wi+ dBi,N ≤ L or d1,Bi
+Wi+ dAi,N ≤ L. We

can then construct the subgraph H whose edges are the L-relevant edges of the original graph.
Finally, an L-relevant edge i is an L-bottleneck iff:

• In H , deleting edge i disconnects vertices 1 and N .

This condition implies an L-bottleneck because if 1 and N are disconnected without an edge
i, it is shown that an L-walk cannot be constructed without i and hence there exist no L-walks
which do not pass through i. It is intuitive that all L-bottlenecks satisfy the condition - one
proof is as follows:

Assume for contradiction that an L-bottleneck i exists where deleting i from H does not
disconnect 1 and N . Then, there exists a path a1

g1−→ a2
g2−→ ...

gk−1−−→ ak from vertex 1
to N in H − i, where a1 = 1 and ak = N (note that this path need not be an L-walk).
It is simple to see that there has to exist an L-walk in which g1 precedes i, and another
in which gk−1 succeeds i. However, there must then exist two edges gj−1 and gj such
that gj−1 precedes i but gj succeeds i: that is, there exist L-walks of the following forms,
where each P denotes some path:

NOI 2020 National Olympiad in Informatics—Singapore 15



• 1
P0−−−→ aj−1

gj−1−−−−→ aj
P1−−−→ Ai

i−−→ Bi
P2−−−→ N

• 1
P3−−−→ Ai

i−−→ Bi
P4−−−→ aj

gj−−→ aj+1
P5−−−→ N

However, then one of 1 P3−−−→ Ai
P1−−−→ aj

P4−−−→ Bi
P2−−−→ N or 1 P0−−−→ aj−1

gj−1−−−−→
aj

gj−−→ aj+1
P5−−−→ N must be short enough to be an L-walk, and thus i is not in every

L-walk which is a contradiction.

Our final task is now to determine which edges of H disconnect 1 and N when deleted. This
can be done in O(M) by applying Tarjan’s Bridge-Finding Algorithm, compressing biconnected
components, and then running a depth-first search on the resulting graph.

Time complexity: O(MWmax +M logM)

Subtask 7

Limits: (No further constraints)

There are now 109 + 1 possible values of d′1,N , up from 11 in the previous subtask. Notice that
our trial is monotonic in L, in that it succeeds for all L < d′1,N and fails for all L ≥ d′1,N .
We can therefore determine our answer via binary-search, reducing the number of trials needed
from O(Wmax) to O(logWmax).

Time complexity: O(M logWmax +M logM)

Alternative solution

There is an alternative solution for this task. We use the same terminology and insight of
the previous solution up till subtask 5. We similarly construct the subgraph H containing all
relevant edges of G.

Similar to subtask 5, we observe that extending a bottleneck edge is the only possible way to
increase our answer d′1,N , and by the proof in subtask 6, the set of bottlenecks is precisely the
set of edges of H that disconnects vertices 1 and N . Furthermore, if some bottleneck i of H is
extended, the shortest distance from 1 to N , say Si, would become the minimum of:

• d1,N + Pi, and

• The length of the shortest path from 1 to N that does not contain i.

The first case arises when edge i is still short enough that it remains on some shortest path, and
the second case arises when edge i was extended sufficiently such that another path that does
not contain i now becomes the shortest.

NOI 2020 National Olympiad in Informatics—Singapore 16



Since we have the freedom to pick the edge to extend, our answer d′1,N would be the maximum
Si over all bottlenecks i of H .

As with subtask 2, d1,N + Pi may be determined for every edge i with simple precomputation.
It hence remains to determine for every bottleneck i of H the length of the shortest path from 1
to N that does not contain i.

Define the relation ≺ on bottlenecks of H where i ≺ j means that all paths in H from vertex
1 to edge j contain edge i and all paths in H from edge i to vertex N contain edge j. Observe
that ≺ is a total ordering, and so we can enumerate the bottlenecks, say E1, E2, . . . , EB, where
B is the total number of bottlenecks.

For each bottleneck i, let Ci be a set of candidate lengths of shortest path from 1 to N that do
not contain i. We use the following algorithm to populate the sets Ci:

Initially, Ci = {} for all bottlenecks i.

Run Dijkstra’s algorithm from vertex 1 to N , but with an additional value Qv for every
vertex v, representing the number of bottlenecks that the shortest path from 1 to v found
by the Dijkstra’s algorithm contains (note: where there are multiple shortest paths to v
the value of Qv may depend on the tie-breaking mechanism of the Dijkstra’s algorithm
implementation, but it does not affect the correctness of this solution). This may be
done by maintaining the value of Qv on non-bottleneck edges, and incrementing it on
bottleneck edges. However, we additionally do the following when arriving at a visited
vertex:

Let e be the incoming edge being processed, v be the vertex that we arrive at (which is
already visited previously), u be the other endpoint of the incoming edge (u 6= v), and y
be the additional value carried in e (which is equal to Qu + 1 if e is a bottleneck, and Qu

otherwise).

• If y < Qv, we insert d1,u +We + dv,N to the set CEj
for all y < j ≤ Qv.

• Otherwise we do not do anything special.

Note that in this instance of Dijkstra’s algorithm, we do not store whether edges have
been visited, so each edge will be processed twice — one in each direction.

We claim that the above algorithm will result in valid Ci for all bottlenecks i. By saying that
Ci is valid, we mean that the length of the shortest path from 1 to N that does not contain i is
indeed in Ci, and furthermore it must be the minimum value present in Ci.

Before proving the claim, we need to make the following observation (Lemma 1): for any vertex
u, every 1→ u shortest path contains bottlenecks E1, . . . , Ek and does not contain bottlenecks
Ek+1, . . . EB, for some k possibly dependent on the path taken to u. This can be seen by
contradiction:

NOI 2020 National Olympiad in Informatics—Singapore 17



Suppose there is some k1 < k2 such that some 1 → u shortest path P contains Ek2 but
not Ek1 . Then since Ek2 is a bottleneck, all 1 → N shortest paths must contain Ek2 . In
particular there must be at least one such path Q. Since P is a shortest path, the path from
1 to Ek2 that follows Q (which contains Ek1) is no shorter than the path from 1 to Ek2 that
follows P (which does not contain Ek1). By appending the portion of Q from Ek2 to N ,
we have obtained a path from 1 to N that does not contain Ek1 but is at least as short as
Q, thus contradicting the assumption that Ek1 is a bottleneck.

To prove that Ci does not contain any value less than the length of the 1→ N shortest path that
does not contain i =: Ej:

Suppose for contradiction that this is not the case. Then the Dijkstra’s algorithm above
must have visited some vertex v such that all 1 → N shortest paths that contain v also
contain i, and furthermore at v we must have an adjacent vertex u such that y < j ≤ Qv

(for any incoming value y as defined in the Dijkstra’s algorithm above). It is easy to see
that either v comes after i in every such path, or v comes before i in every such path
(otherwise i cannot be a bottleneck). In the case where v comes after i, then every such
path would have passed through i, and hence by Lemma 1 we have y ≥ j. In the case
where v comes before i, then by nature of Dijkstra’s algorithm we would set Qv to some
value strictly less than j. In any case the condition y < j ≤ Qv cannot be fulfilled, hence
arriving at a contradiction.

We now need to show the other part of the claim — that for every bottleneck i, the length of the
shortest path from 1 to N that does not contain i is indeed in Ci. Since we have already proven
the first part the claim, it suffices to show that for every bottleneck i, the length of the shortest
path from 1 to N that does not contain i is at least as large as some element in Ci.

Consider any shortest path P from vertices 1 to N that does not contain edge i =: Ej . Since
Q1 = 0 and QN = B, there must exist an edge i0 in P such that QAi0

< j ≤ QBi0
, where Ai0

and Bi0 are the two endpoints of i0, and Ai0 precedes Bi0 in P . Furthermore, since P does not
contain i, i0 cannot be i itself.

Observe that i0 cannot be any other bottleneck either: If i0 is a bottleneck such that i ≺ i0,
then by Lemma 1 this is a contradiction, since the shortest path from 1 to Ai0 found by the
Dijkstra’s algorithm contains QAi0

< j bottleneck edges. On the other hand, if i0 ≺ i, observe
that d1,Ai

+Wi + dBi,Bi0
≤ d1,Bi0

, where Ai and Bi are the two endpoints of i and Ai precedes
Bi in the Dijkstra’s algorithm, because QBi0

≥ j implies by Lemma 1 that the shortest 1→ Bi0

path passes through i. By triangle inequality d1,Bi0
≤ d1,Ai

+ dAi,Bi0
, and since Wi ≥ 0, we

have dBi,Bi0
≤ Wi + dAi,Bi0

. This means that dBi0
,Bi

+ dBi,N ≤ dBi0
,Ai

+Wi + dBi,N , which
means that there is a Bi,0 → N path that does not contain i, and this path is at least as short as
the shortest Bi,0 → N path containing i. This contradicts the fact that i is a bottleneck.

Hence, during the execution of the Dijkstra’s algorithm, there will be an iteration where v = Bi0

and u = Ai0 (where v and u are as defined in the Dijkstra’s algorithm above), and y = Qu <

NOI 2020 National Olympiad in Informatics—Singapore 18



j ≤ Qv, and hence k := d1,Ai0
+Wi0 + dBi0

,N is in Ci. Finally, observe that k is the length of
the shortest path from 1 to N that contains i0. Thus, since P contains i0, the length of P must
be at least k.

This proves the correctness of the solution.

Maintaining the sets Ci naively takes O(MB) time and space complexity. However, with an
appropriate range-minimum data structure, we can compute the array Ci in O(B+M logM) =
O(M logM). For example, after sorting the ranges by their start index, we could use a priority
queue with smallest distance at the top to obtain the array Ci.

Time complexity: O(M logM)

NOI 2020 National Olympiad in Informatics—Singapore 19


