Type: RemoteJudge 1000ms 256MiB

Expected Destruction

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

Description

You have a set $S$ of $n$ distinct integers between $1$ and $m$.

Each second you do the following steps:

  1. Pick an element $x$ in $S$ uniformly at random.
  2. Remove $x$ from $S$.
  3. If $x+1 \leq m$ and $x+1$ is not in $S$, add $x+1$ to $S$.

What is the expected number of seconds until $S$ is empty?

Output the answer modulo $1\,000\,000\,007$.

Formally, let $P = 1\,000\,000\,007$. It can be shown that the answer can be expressed as an irreducible fraction $\frac{a}{b}$, where $a$ and $b$ are integers and $b \not \equiv 0 \pmod{P}$. Output the integer equal to $a \cdot b^{-1} \bmod P$. In other words, output an integer $z$ such that $0 \le z < P$ and $z \cdot b \equiv a \pmod{P}$.

The first line contains two integers $n$ and $m$ ($1 \leq n \leq m \leq 500$) — the number of elements in the set $S$ and the upper bound on the value of the elements in $S$.

The second line contains $n$ integers $S_1,\,S_2,\,\dots,\,S_n$ ($1 \leq S_1 < S_2 < \ldots < S_n \leq m$) — the elements of the set $S$.

Output a single integer — the expected number of seconds until $S$ is empty, modulo $1\,000\,000\,007$.

Input

The first line contains two integers $n$ and $m$ ($1 \leq n \leq m \leq 500$) — the number of elements in the set $S$ and the upper bound on the value of the elements in $S$.

The second line contains $n$ integers $S_1,\,S_2,\,\dots,\,S_n$ ($1 \leq S_1 < S_2 < \ldots < S_n \leq m$) — the elements of the set $S$.

Output

Output a single integer — the expected number of seconds until $S$ is empty, modulo $1\,000\,000\,007$.

2 3
1 3
5 10
1 2 3 4 5
5 10
2 3 6 8 9
1 100
1
750000009
300277731
695648216
100

Note

For test 1, here is a list of all the possible scenarios and their probabilities:

  1. $[1, 3]$ (50% chance) $\to$ $[1]$ $\to$ $[2]$ $\to$ $[3]$ $\to$ $[]$
  2. $[1, 3]$ (50% chance) $\to$ $[2, 3]$ (50% chance) $\to$ $[2]$ $\to$ $[3]$ $\to$ $[]$
  3. $[1, 3]$ (50% chance) $\to$ $[2, 3]$ (50% chance) $\to$ $[3]$ $\to$ $[]$

Adding them up, we get $\frac{1}{2}\cdot 4 + \frac{1}{4} \cdot 4 + \frac{1}{4} \cdot 3 = \frac{15}{4}$. We see that $750000009 \cdot 4 \equiv 15 \pmod{1\,000\,000\,007}$.

20240118期望的线性选讲

Not Attended
Status
Done
Rule
ACM/ICPC
Problem
12
Start at
2024-1-18 8:00
End at
2024-1-23 8:00
Duration
120 hour(s)
Host
Partic.
19