#A. Array Balancing

    Type: RemoteJudge 2000ms 256MiB

Array Balancing

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

Description

You are given two arrays of length $n$: $a_1, a_2, \dots, a_n$ and $b_1, b_2, \dots, b_n$.

You can perform the following operation any number of times:

  1. Choose integer index $i$ ($1 \le i \le n$);
  2. Swap $a_i$ and $b_i$.

What is the minimum possible sum $|a_1 - a_2| + |a_2 - a_3| + \dots + |a_{n-1} - a_n|$ $+$ $|b_1 - b_2| + |b_2 - b_3| + \dots + |b_{n-1} - b_n|$ (in other words, $\sum\limits_{i=1}^{n - 1}{\left(|a_i - a_{i+1}| + |b_i - b_{i+1}|\right)}$) you can achieve after performing several (possibly, zero) operations?

The first line contains a single integer $t$ ($1 \le t \le 4000$) — the number of test cases. Then, $t$ test cases follow.

The first line of each test case contains the single integer $n$ ($2 \le n \le 25$) — the length of arrays $a$ and $b$.

The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) — the array $a$.

The third line of each test case contains $n$ integers $b_1, b_2, \dots, b_n$ ($1 \le b_i \le 10^9$) — the array $b$.

For each test case, print one integer — the minimum possible sum $\sum\limits_{i=1}^{n-1}{\left(|a_i - a_{i+1}| + |b_i - b_{i+1}|\right)}$.

Input

The first line contains a single integer $t$ ($1 \le t \le 4000$) — the number of test cases. Then, $t$ test cases follow.

The first line of each test case contains the single integer $n$ ($2 \le n \le 25$) — the length of arrays $a$ and $b$.

The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) — the array $a$.

The third line of each test case contains $n$ integers $b_1, b_2, \dots, b_n$ ($1 \le b_i \le 10^9$) — the array $b$.

Output

For each test case, print one integer — the minimum possible sum $\sum\limits_{i=1}^{n-1}{\left(|a_i - a_{i+1}| + |b_i - b_{i+1}|\right)}$.

3
4
3 3 10 10
10 10 3 3
5
1 2 3 4 5
6 7 8 9 10
6
72 101 108 108 111 44
10 87 111 114 108 100
0
8
218

Note

In the first test case, we can, for example, swap $a_3$ with $b_3$ and $a_4$ with $b_4$. We'll get arrays $a = [3, 3, 3, 3]$ and $b = [10, 10, 10, 10]$ with sum $3 \cdot |3 - 3| + 3 \cdot |10 - 10| = 0$.

In the second test case, arrays already have minimum sum (described above) equal to $|1 - 2| + \dots + |4 - 5| + |6 - 7| + \dots + |9 - 10|$ $= 4 + 4 = 8$.

In the third test case, we can, for example, swap $a_5$ and $b_5$.

CF Educational Codeforces Round 126

Not Attended
Status
Done
Rule
ACM/ICPC
Problem
6
Start at
2023-11-9 14:30
End at
2023-11-9 17:00
Duration
2.5 hour(s)
Host
Partic.
15