#P9491. ZHY 的集合

ZHY 的集合

题目背景

赛后时限改为 1s。

ZHY 又一次在赛时看错题了。

题目描述

对于两个集合大小为 xx 的集合 A,BA,B,满足 AB=A\cap B=\varnothing(空集),ZHY 定义 f(A,B)f(A,B) 如下:

  • C=ABC=A\cup B。将 CC 中的元素从小到大排序。

  • f(A,B)=i=1xCif(A,B)=\displaystyle \sum_{i=1}^x C_i

现在,ZHY 有 nn 个大小为 mm 的集合 S1,S2,,SnS_1,S_2,\cdots,S_n,他想知道 $\displaystyle \sum_{i=1}^n\sum_{j=i + 1}^n f(S_i,S_j)$ 是多少。

然而,ZHY 并不满足于此。于是他又进行了 qq 次修改操作,每次操作会重新给定一个集合。请你在每次修改后都输出一次答案,即 $\displaystyle \sum_{i=1}^n\sum_{j=i + 1}^n f(S_i,S_j)$。保证任意时刻任意一个集合中元素两两不同,保证任意时刻任意两个集合的交为空。

输入格式

第一行三个整数 n,m,qn,m,q

22 行到第 n+1n+1 行,每行 mm 个整数,描述集合 S1,S2,,SnS_1,S_2,\cdots,S_n。第 i+1i+1 行的 mm 个数为集合 SiS_i 中的 mm 个整数。

随后 qq 行,每行第一个整数为 xx,表示将要修改的集合的编号。随后 mm 个数表示新的 SxS_x 中的 mm 个整数。

输出格式

第一行一个整数表示初始时的答案。

随后 qq 行,每行一个整数表示每次修改后的答案。

3 2 2
1 3
2 6
4 8
1 3 5
2 7 9
13
18
26

提示

本题采用捆绑测试。

Subtaskid\mathrm{Subtask} \kern{2pt} \mathrm{id} nn mm qq 分值
00 100\le 100 10\le 10 77
11 100\le 100 100\le 100 1111
22 103\le 10^3 103\le 10^3 77
33 104\le 10^4 =0=0 1515
44 103\le 10^3 2727
55 104\le 10^4 3333

对于所有数据,0n,q1040 \le n, q \le 10^41m1001 \le m \le 1001Si,j1091 \le S_{i,j} \le 10^9。保证任意时刻对于 $\forall i\in [1,n],\kern{2pt}j \in [1,m],\kern{2pt}i' \in[1,n],\kern{2pt}j'\in [1,m]$,若 iii \ne i'jjj \ne j',则 Si,jSi,jS_{i,j} \ne S_{i',j'}。