#P8819. [CSP-S 2022] 星战

    ID: 3210 Type: RemoteJudge 2000ms 512MiB Tried: 7 Accepted: 2 Difficulty: 6 Uploaded By: Tags>2022O2优化哈希,HASHCSP S 提高级

[CSP-S 2022] 星战

题目描述

在这一轮的星际战争中,我方在宇宙中建立了 nn 个据点,以 mm 个单向虫洞连接。我们把终点为据点 uu 的所有虫洞归为据点 uu 的虫洞。

战火纷飞之中这些虫洞很难长久存在,敌人的打击随时可能到来。这些打击中的有效打击可以分为两类:

  1. 敌人会摧毁某个虫洞,这会使它连接的两个据点无法再通过这个虫洞直接到达,但这样的打击无法摧毁它连接的两个据点。
  2. 敌人会摧毁某个据点,由于虫洞的主要技术集中在出口处,这会导致该据点的所有还未被摧毁的虫洞被一同摧毁。而从这个据点出发的虫洞则不会摧毁

注意:摧毁只会导致虫洞不可用,而不会消除它的存在。

为了抗击敌人并维护各部队和各据点之间的联系,我方发展出了两种特种部队负责修复虫洞:

  • A 型特种部队则可以将某个特定的虫洞修复。
  • B 型特种部队可以将某据点的所有损坏的虫洞修复。

考虑到敌人打击的特点,我方并未在据点上储备过多的战略物资。因此只要这个据点的某一条虫洞被修复,处于可用状态,那么这个据点也是可用的。

我方掌握了一种苛刻的空间特性,利用这一特性我方战舰可以沿着虫洞瞬移到敌方阵营,实现精确打击。

为了把握发动反攻的最佳时机,指挥部必须关注战场上的所有变化,为了寻找一个能够进行反攻的时刻。总指挥认为:

  • 如果从我方的任何据点出发,在选择了合适的路线的前提下,可以进行无限次的虫洞穿梭(可以多次经过同一据点或同一虫洞),那么这个据点就可以实现反击
  • 为了使虫洞穿梭的过程连续,尽量减少战舰在据点切换虫洞时的质能损耗,当且仅当只有一个从该据点出发的虫洞可用时,这个据点可以实现连续穿梭
  • 如果我方所有据点都可以实现反击,也都可以实现连续穿梭,那么这个时刻就是一个绝佳的反攻时刻。

总司令为你下达命令,要求你根据战场上实时反馈的信息,迅速告诉他当前的时刻是否能够进行一次反攻

输入格式

输入的第一行包含两个正整数 n,mn,m

接下来 mm 行每行两个数 u,vu,v,表示一个从据点 uu 出发到据点 vv 的虫洞。保证 uvu \ne v,保证不会有两条相同的虫洞。初始时所有的虫洞和据点都是完好的。

接下来一行一个正整数 qq 表示询问个数。

接下来 qq 行每行表示一次询问或操作。首先读入一个正整数 tt 表示指令类型:

  • t=1t = 1,接下来两个整数 u,vu, v 表示敌人摧毁了从据点 uu 出发到据点 vv 的虫洞。保证该虫洞存在且未被摧毁。
  • t=2t = 2,接下来一个整数 uu 表示敌人摧毁了据点 uu。如果该据点的虫洞已全部被摧毁,那么这次袭击不会有任何效果。
  • t=3t = 3,接下来两个整数 u,vu, v 表示我方修复了从据点 uu 出发到据点 vv 的虫洞。保证该虫洞存在且被摧毁。
  • t=4t = 4,接下来一个整数 uu 表示我方修复了据点 uu。如果该据点没有被摧毁的虫洞,那么这次修复不会有任何效果。

在每次指令执行之后,你需要判断能否进行一次反攻。如果能则输出 YES 否则输出 NO

输出格式

输出一共 qq 行。对于每个指令,输出这个指令执行后能否进行反攻。

3 6
2 3
2 1
1 2
1 3
3 1
3 2
11
1 3 2
1 2 3
1 1 3
1 1 2
3 1 3
3 3 2
2 3
1 3 1
3 1 3
4 2
1 3 2

NO
NO
YES
NO
YES
NO
NO
NO
YES
NO
NO

提示

【样例解释 #1】

虫洞状态可以参考下面的图片, 图中的边表示存在且未被摧毁的虫洞:

【样例 #2】

见附件中的 galaxy/galaxy2.ingalaxy/galaxy2.ans

【样例 #3】

见附件中的 galaxy/galaxy3.ingalaxy/galaxy3.ans

【样例 #4】

见附件中的 galaxy/galaxy4.ingalaxy/galaxy4.ans

【数据范围】

对于所有数据保证:1n5×1051 \le n \le 5 \times {10}^51m5×1051 \le m \le 5 \times {10}^51q5×1051 \le q \le 5 \times {10}^5

测试点 nn \le mm \le qq \le 特殊限制
131 \sim 3 1010 2020 5050
484 \sim 8 103{10}^3 104{10}^4 103{10}^3
9109 \sim 10 5×1055 \times {10}^5 5×1055 \times {10}^5 5×1055 \times {10}^5 保证没有 t=2t = 2t=4t = 4 的情况
111211 \sim 12 保证没有 t=4t = 4 的情况
131613 \sim 16 105{10}^5
172017 \sim 20 5×1055 \times {10}^5 5×1055\times 10^5