#P4672. [BalticOI 2011 Day2] Tree Mirroring

[BalticOI 2011 Day2] Tree Mirroring

题目描述

Let TT be a rooted tree (a connected undirected acylic graph), and let SS be a perfect copy of TT. Construct a new graph by taking the union of TT and SS, and merging the corresponding leaf nodes (but never the root). We call such a graph a tree-mirrored graph.

输入格式

The first line of input contains two integers NN and MM, the number of vertices and edges of a graph GG. The vertices in GG are labeled from 11 to NN. The following MM lines describe the edges. Each such line contains two integers xx and y(xy;1x,yN)y(x≠y;1 \le x,y \le N), describing one edge. There will be at most one edge between any pair of vertices.

输出格式

The first and only line of output should contain the string YES if the graph GG is a tree-mirrored graph, and NO otherwise.

题目大意

题目描述

对于一棵树 TT,并复制一棵与 TT 同构的树 SS。构造一个新的图 TT',新图 TT' 通过合并 TTSS 中相应的非根叶节点得到。我们称这样的图为树之镜像图。

给定一个图 GG,你需要判断 GG 是否是树之镜像图。

输入输出格式

输入格式:

输入的第一行包含两个整数 NNMM,表示图 GG 的顶点和边数。

接下来有 MM 行,每一行包含两个正整数 xxyyxyx \neq y1x,yn1 \leq x,y \leq n)表示顶点 xxyy 之间有一条边。保证没有重边。

输出格式:

输出只有一行,判断图 GG 是否是一个树之镜像图,是输出 yes,否则输出 no

Translated by @找寻

7 7
1 2
2 3
3 4
4 5
5 6
6 7
7 1
NO
6 6
1 2
2 3
2 4
3 5
4 5
5 6
YES
22 28
13 8
8 1
1 22
1 12
1 14
13 18
13 4
4 20
20 7
13 15
15 3
15 9
9 16
9 19
22 5
12 5
14 5
5 11
11 6
18 6
7 10
10 17
17 6
3 21
21 6
16 2
19 2
2 21
YES

提示

对于 30%30\% 的数据,3N,M3003 \le N,M \le 300

对于 60%60\% 的数据,3N,M35003 \le N,M \le 3500

对于所有数据,3N,M1053 \le N,M \le 10^5