#P3510. [POI2010] JED-Ones

    ID: 2569 Type: RemoteJudge 2000ms 125MiB Tried: 0 Accepted: 0 Difficulty: (None) Uploaded By: Tags>2010单调队列POI哈希,HASH级数

[POI2010] JED-Ones

题目描述

Let xx be a sequence of zeros and ones.

An utterly forlorn one (UFO) in xx is the extreme (either first or last) one that additionally does not neighbour with any other one.

For instance, the sequence 10001010 has two UFOs, while the sequence 1101011000 has no UFO, and the sequence 1000 has only one UFO.

Let us denote the total number of UFOs in the binary representations of the numbers from 1 to nn with sks(n)sks(n).

For example, sks(5)=5sks(5)=5, sks(64)=59sks(64)=59, sks(128)=122sks(128)=122, sks(256)=249sks(256)=249.

We will be working with very large numbers.

Therefore, we shall represent them in a succinct way.

Suppose xx is a positive integer and x2x_2 is its binary representation (starting with 1). Then the succinct representation of xx is the sequence REP(x)REP(x) consisting of positive integers denoting the lengths of successive blocks of the same digits.

For example:

REP(460 288)=REP(11100000110000000002)=(3,5,2,9)REP(460\ 288)=REP(1110000011000000000_2)=(3,5,2,9) REP(408)=REP(1100110002)=(2,2,2,3)REP(408)=REP(110011000_2)=(2,2,2,3)

Your task is to write a program that finds the sequence REP(sks(n))REP(sks(n)) given REP(n)REP(n).

输入格式

The first line of the standard input holds one integer kk (1k1 000 0001\le k\le 1\ 000\ 000) denoting the length of the succinct representation of a positive integer nn.

The second line of the standard input holds kk integers x1,x2,,xkx_1,x_2,\cdots,x_k (0<xi1 000 000 0000<x_i\le 1\ 000\ 000\ 000), separated by single spaces.

The sequence x1,x2,,xkx_1,x_2,\cdots,x_k forms the succinct representation of the number nn.

You may assume that x1+x2++xk1 000 000 000x_1+x_2+\cdots+x_k\le 1\ 000\ 000\ 000, i.e., 0<n<21 000 000 0000<n<2^{1\ 000\ 000\ 000}.

输出格式

Your program is to print out two lines to the standard output.

The first one should contain a single positive integer ll.

The second line should hold ll positive integers y1,y2,,yly_1,y_2,\cdots,y_l, separated by single spaces.

The sequence y1,y2,,yly_1,y_2,\cdots,y_l is to form the succinct representation of sks(n)sks(n).

题目大意

xx 是一个由 01\texttt{01} 组成的序列。一个 UFO 指的是序列中第一个 11 或者最后一个 11 且不和任何一个 11 相邻。例如 10001010\texttt{10001010} 有两个 UFO,1101011000\texttt{1101011000} 没有 UFO,1000\texttt{1000} 只有一个 UFO。

11nn 的数的二进制表示中 UFO 的总数为 sks(n)sks(n)。例如,sks(5)=5,sks(64)=59,sks(128)=122,sks(256)=249sks(5)=5, sks(64)=59, sks(128)=122, sks(256)=249.

我们需要处理非常大的数字。因此 nn 会用压缩的形式表示。设 xx 是一个正整数 x2x_2 是其二进制表示(最高位为 11),则该数的压缩形式 REP(x)REP(x) 为一个序列,表示连续相同数位的数量。例如:

REP(460288)=REP(11100000110000000002)=(3,5,2,9)REP(460288)=REP(1110000011000000000_2)=(3,5,2,9) REP(408)=REP(1100110002)=(2,2,2,3)REP(408)=REP(110011000_2)=(2,2,2,3)

已知 REP(n)REP(n),求 REP(sks(n))REP(sks(n))

输入格式:

第一行有一个整数 kk,表示一个正整数 nn 的压缩形式。
接下来一行有 kk 个整数 x1,x2,,xkx _ 1, x _ 2, \cdots, x _ k,用空格分隔,表示 nn 的压缩形式的序列。保证 x1+x2++xk109x _ 1 + x _ 2 + \cdots + x _ k \le 10 ^ 9,也就是说 0<n<21090<n< 2 ^ {10 ^ 9}

输出格式:

输出两行,第一行有一个正整数 ll,第二行有 ll 个正整数,用空格分隔,表示 sks(n)sks(n) 的压缩形式。

6
1 1 1 1 1 1
5
1 1 2 1 1