#P1038. [NOIP2003 提高组] 神经网络

    ID: 38 Type: RemoteJudge 1000ms 125MiB Tried: 1 Accepted: 1 Difficulty: 4 Uploaded By: Tags>图论2003NOIp 提高组拓扑排序

[NOIP2003 提高组] 神经网络

题目背景

人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。

题目描述

在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子:

神经元(编号为 ii

图中,X1X3X_1 \sim X_3 是信息输入渠道,Y1Y2Y_1 \sim Y_2 是信息输出渠道,CiC_i 表示神经元目前的状态,UiU_i 是阈值,可视为神经元的一个内在参数。

神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经元分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。

兰兰规定,CiC_i 服从公式:(其中 nn 是网络中所有神经元的数目)

$$C_i=\left(\sum\limits_{(j,i) \in E} W_{ji}C_{j}\right)-U_{i} $$

公式中的 WjiW_{ji}(可能为负值)表示连接 jj 号神经元和 ii 号神经元的边的权值。当 CiC_i 大于 00 时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为 CiC_i

如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态(CiC_i),要求你的程序运算出最后网络输出层的状态。

输入格式

输入文件第一行是两个整数 nn1n1001 \le n \le 100)和 pp。接下来 nn 行,每行 22 个整数,第 i+1i+1 行是神经元 ii 最初状态和其阈值(UiU_i),非输入层的神经元开始时状态必然为 00。再下面 pp 行,每行有两个整数 i,ji,j 及一个整数 WijW_{ij},表示连接神经元 i,ji,j 的边权值为 WijW_{ij}

输出格式

输出文件包含若干行,每行有 22 个整数,分别对应一个神经元的编号,及其最后的状态,22 个整数间以空格分隔。仅输出最后状态大于 00 的输出层神经元状态,并且按照编号由小到大顺序输出。

若输出层的神经元最后状态均小于等于 00,则输出 NULL

5 6
1 0
1 0
0 1
0 1
0 1
1 3 1
1 4 1
1 5 1
2 3 1
2 4 1
2 5 1

3 1
4 1
5 1

提示

【题目来源】

NOIP 2003 提高组第一题