#### Ad-hoc 选讲

邪恶的猫娘组组长(稲葉廻る)

华南师范大学附属中学

2024/9/26

#### 什么是 Ad-hoc

通常意义下,Ad-hoc 指代思维题。这种问题既没有太多的套路,也没有高深的算法,纯粹考察思维。

Ad-hoc 在 OI 类竞赛中的比重非常高,在 OI 竞赛当中除了算法的积累,更重要的是思维的磨练。

希望用几道题带领大家见识 Ad-hoc 的巧妙。

我们的头脑比天空更加广阔。——《素晴日》

## CF1909E Multiple Lamps

有 n 盏灯,n 个开关。其中按下第 i 个意味着所有编号为 i 的倍数的灯都会转换状态(开变关,关变开)。 有 m 条限制,形如如果按下第  $u_i$  个开关必须按下  $v_i$ 。 你需要按下若干开关(至少按一个),使得亮的灯总数  $\leq \frac{n}{5}$ 。  $n, m \leq 2 \times 10^5$ 。

## CF1924E Paper Cutting Again

一个  $n \times m$  的纸片。每次随机沿着一条平行于 x/y 的 n+m-2 条整线之一切开这个纸片(切开后纸片的 n,m 会发生变化)。 问期望切多少次后这个纸片面积  $\leq k$ 。  $n,m \leq 2 \times 10^5$ 。

## AGC028C Min Cost Cycle

给 n 个点,每个点有两个权值  $a_i,b_i$ 。  $i\to j$  的边权为  $\min(a_i,b_j)$ 。 求最小权值哈密顿回路。  $n<2\times 10^5$ 。

## P10879 「KDOI-07」对树链剖分的爱

给出一棵 n 个节点以 1 为根的有根树。对于第  $2 \le i \le n$  个节点,其父亲  $f_i$  在  $[l_i,r_i]$  中均匀随机。每个树的边有边权,初始为 0。

现在有 m 次操作,第 i 次操作表示将  $(u_i,v_i)$  的路径上所有的边的权值统一加上  $w_i$ 。m 次操作结束后,对于所有  $i=2\sim n$ ,求  $(i,f_i)$  边上权值的期望,对 998244353 取模。

 $n \le 5000$ ,  $m \le 2.5 \times 10^5$ .

Author: Inaba\_Meguru。



# CF1815F OH NO1 (-2-3-4)

给一个由若干三角形组成的图,给每条边赋权  $1 \sim 3$ 。点有初始 点权,赋权之后每个点的最终点权为其初始点权加上连接其的边 的权值之和。

你需要构造一种赋权方式使得相邻节点的最终点权两两不同。  $n < 10^6$  ,  $m < 1.2 \times 10^6$  。

#### AGC029F Construction of a tree

给 n 个点,n-1 个点集合  $S_1, S_2, \ldots, S_{n-1}$ 。 对每个集合找出两个不同元素  $u_i, v_i$ 。 使得  $E = \{(u_i, v_i)\}$  组成一棵树。  $n \leq 10^5$ , $\sum |S_i| \leq 2 \times 10^5$ 。

## Q&A

大家有没有什么问题? 和今天主题无关也可以。