¥F—T AT rI IV arF A b 2020
wo(1

2020 £ 1 H 18 H

A FERE

1EHORS Y MEETRELSBONZIY A% max(H,W) HEPTIEATEET, LoT, kOB HEIT
M =max(H,W) £ LT, KM > N %7z H/N OB K L7207,

M OfEi%ERD B 11E, FMEREEHNED, EHET 177) 2 LTELDOSHETHEIN TV S max
EFRHVWHIXEWTT,

KM > N %573 RN K Offik, #HE /| 28BRE L LT,

o N M THOGINE L E, N/M
o Z3THVEE, N/M+1

LIRBDT, FMDEERHNTRDL I ENTEET, 0B, (N+M—1)/M T NERMAEDELRLTHK
HEZENTEET,
PARIZ CH+ 1T &2 FERHIZRLET,

#include<cstdio>
using namespace std;

int main(){
int H, W, N;
scanf ("%d%d%d", &H, &W, &N);
intm=H>W?H: W;
int ans = N / m;
if(N % m !'= 0) ans++;
printf ("%d\n", ans);

return O;

B &
COBMBECREEF—TY RO BICL YRESNELE

ORy b i 2T PEDPIRERE T, AEOTNHEEZ 5 AN EITERT S, LD & 5 maEiik
WWEDBERERDDZENTEET,

e ORY M2 T ARSI WVIEHIZY — R UL p1,pa,..., o8 ET 5,
e =12NDJHIZ, AFDZ %175,
— Ry b p QBT TIET RO EZTRY bOBI L ERSARNESIE, BRY b p 2T LRk
DB, THITRVAES, BIRWEHRD B,

PAFIZ CH+ & 5K 2R L XY,
#include<cstdio>
#include<utility>
#include<algorithm>
using namespace std;

typedef pair<int, int> P;

const int MAX_N = 100000;
1000000000;

const int MAX_V

int N;
int X[MAX_N];
int L[MAX_N];

void input (O{
scanf ("%d", &N);
for(int i = 0; i < N; ++i){

scanf ("%d%d", X + 1, L + i);

P ps[MAX_N];

int solve(){

for(int i = 0; i < N; ++i){

pslil = P(X[i] + L[il, X[i] - L[i1);
}
sort(ps, ps + N);
int cur = -MAX_V;
int ans = 0;
for(int i = 0; i < N; ++i){

if (cur <= ps[i].second){

ans++;

cur = ps[i].first;

}

return ans;

int main(){
input O ;
int ans = solve();
printf ("%d\n", ans);

return 0;

C: Subarray Sum
BUF O & 5 mBOIA G % %7 L E T,

e S<10° &, S,8,...,5,5+1,5+1,...,5+1
e S=10Dr &, S8, ...,51,1,...,1

U S K N ET,

D: Swap and Flip

H—NR% p1,pa,...,pn PIEIZHEAREEZ D 72D BERBERBUL, i < j 2D p; > p; Z727 (i,7) O
Az —BL 3., ZOMBEZEAKE VWVNET, YO SIZH— RE2UWRIEREOBEABHBIINE 72 5
MEZEL LD,

A=K i BAELPOEBEDOH L ENS j BHOMBEIZRKZELVLET, 202 E, EZAEAVTWAEHIZED
NrfElE, BEFIEIZ X ST

o i —j MPMEESIX A
o i —j WA SIE B;

AR 3
InZrznad,

® dpask; = mask C{1,2,... N} KEENDE I — R L SO H— F e UTHGAMNICES &
SIZARB L ED, DG DR DFE

EWVSFIGIETRIZ L D EAZRDE I ENTEET,

E: Bichromization

5zen30757% GELET,

EFT. HODITARARER T —AE2EZEZEL & D, HDHTEM v BFEL T, EED v TS B THM u 12X
UT D, < Dy 0N DHE, 0 Y TEAAEETT, RER6, HN v 2S5 EmPRRZTERANDR/ND 3
ANDINA%E v =1v1,0v0,...,0, £THEE,

o k>275I A vy, ... v B
o k=275 vy, 01 B

FNTENIEM vo DOUDPBRBRBEHMANDNNAL > TWENSTT,

FRUADBE I TO LI LT EAZE DY TEI LN TEET,

F9, KHEM v TR UT, ZNCHET2HM u D55 D, DEPRNDED (B HD5E. ThoD
SHLE T u BRNDED) 2L o>Tp, ELET, TLUT, 777 G ODHHEM v IZDWTH {v,p,} ZFKL
72097 G 2#BEZAET, ZOTT TR ET,

CTHM py PEBRBMIIRDEIICEDET, 510, HXAENZ {v,p,} KHEA D, 2HH Y TET,
INTY I 708N G TEHRL G THNITHMORMPR-IND L 51Chb L,

BRI G ZEHEENBRVLICEAZE DY TERERD D FTH, ZOLIBRLIZDOVTIXTRTEA 107
EEOYTHIERWZ B2 £,

UETE b LTHESNE LT,

F: Monochromization

(1/21 Z2H8)

MEREREIZDODAT Y IO THHUES, BH—AT v TWREITNAT Y b2 T-ODEDTH
D, BATY TREBIIBEA LIF2GF530TT, HRBICINSZ2FTLDTT NI XLDEEEERL
7,

B—2ATv T BSNADIERK
HH . —FOBETUTOVWTNIDED GRTEEZEDEEZET,

BIE 1 720 O0EY, AELIREOOEZER, BALZSTIIODVWTGRAZMIZES,

BE 2 720 0B, BALKTIZOVWTHZZREOOZEY, TOMGIZES, LI HOAHEE
5L 5,

BE 3 512 VWL DB, AEZIFROBEZRR, BALEIIOWTEALAIZES,

BE 4 F WL DOER, BAFLEINZOWTHEZIZREOMEZES, ZTOMOIIZES, 727 0MAFOHMNHE
T5&5129 5,

BlE 5 AELIZBOAEZER, LU RV OEDY, TNSH T RTERAIGEASLBIZES,

T ON2eBD, RELEBFOMREACBONGNEOND ZEWHY £T, BEROBONS G »
SEMEFZ —RITEICTESDLEIITLEL & D, ZDOITIE, LTFTOX S IC®oNZEARTBIELNTT,

o N IZBVWT IR 517, JIIRROBIETES NI LAY,
o LELDAT, FIZIRWT 72254517, JldRE» 6 “HHOBRETES N LAY,
o TNk, —7ZI 570517, AW hd X THRVIRT,

BZRAT v T BYFOHA L

BONZEARTIT, FIOEEZRDZLEE, BOoNIBBONAPMED HEINEHMADILEERET,
B S PMZRS N OMEBIEE 217, FOBPZTITHKIZL T, r 1T ¢ FIE-> TR LN ES N OEEE KD
57-0D5=0DHEEHALET, H-0ObDIE/7EHIZ DP 2IEUH5EDT, H_0EDIEE 540
BANEREEDDHDTT,

o i1
dp; ;= (BME kSR LOT i 17 j Sl B2 HIEOK) L0 SBIEHEEZ T AXENTYT (BIED
FBHEE ATV TTO2H72EDTT),
r=H»D2c=W DFHLED TRVWEGA TYIHIREXER VD URRS ZLITERLUTIEI WY,
o J3i% 2
FT. hxw DESHRT) Yy RRSMEXOREIZIVEONDGZ Y vy NOEEERODEL &5, 5
5NB5 70w RiE, BEROMEZUNEHE UTHRAIZAL, 35 I2RB->-THENE7V Y FD
17 FINMi~"EZ 2D LD £9, TOXIBRBESNSDMEE pp, FEHEIZRKDOSNE T,

T, DOMBEIZRVE L&D, r=H D c=W DE&, RKOLGEDHIE puw TT,
r<HZErZc<W OBEEEZAET, BLBITOEE, AKBRLTOEES, BOBRWTOHE
47 Rp,Rw,Ry Tho7z LET, SOES Cp,Cw,Cn BRAKIZEDET, Ry x Cp B
Rp x Cy DD ADMAEIZBE SN DNIIRIEDIEFIZ LD VA, £/, INSDHTOELSNS
EEBRORETNEH L LTHIZAL, 35 RMIZRE->THRONSE Y v NOFT, FlERAREZ
b0V ET, 51T, Ry x Cp DEBSNFHIE Ry, Cp IZXT 2IEDIHEZITIZ, R x Cw
DESNTGIE R, Cw T 2MEDIHFZ T ITEKTFTL20T, ZNOIEMINICEDDE I LN TEE
T Ko TIDHBIIBONIEBONADOMBUI ETEHEL p ZHWTEHETE £,

Fed

UEDELELD, THEE rmask HES cmask D TH-T, £L2DZ VY RS rmask & cmask %
OB\ Dy RIZ—Z»5m547, FINEFEELEVWESIREDIZH LT, EoAT Y TTRDEE
RLELESZZLIZLD, B2 RDBIEDTEL LD ET,

Keyence Programming Contest 2020 Editorial

wo01

January 18, 2020

Problem A

In one operation, we can increase the number of black squares by max(H, W'). Thus, the answer is the
minimum integer K such that KM > N, where M = max(H, W).

To find the value M, we can use a conditional branch or the function max, which is available in
standard libraries in many languages.

If we use a conditional branch, the minimum integer K such that KM > N can be found as:

o N/M, if M divides N
e N/M + 1, otherwise

where the operator / denotes integer division. We can also find it as (N+M —1)/M without a conditional
branch.

Sample C++ implementation follows:

#include<cstdio>
using namespace std;

int main(){
int H, W, N;
scanf ("%d%d%d", &H, &W, &N);
intm=H>W?H : W;
int ans = N / m;
if(N % m !'= 0) ans++;
printf ("%d\n", ans);

return O;

Problem B
This problem is proposed by KEYENCE.

Let S; = X; — L; and T; = X; + L;. The movable range of arms of Robot i is (S;, T;).
Noticing that whether Robot i is kept or not does not affect the part with coordinate T; or greater,

we can find the answer with the following greedy algorithm:

e Sort the robots in ascending order of T;, and let the result be p1,p2,...,pN-
e For each ¢ =1,2,..., N in this order, do the following:
— If the movable range of arms of Robot p; does not intersect with those of the robots that we

decided to keep, we decide to keep Robot p;. Otherwise, we decide to remove this robot.
Sample C++ implementation follows:
#include<cstdio>
#include<utility>
#include<algorithm>
using namespace std;

typedef pair<int, int> P;

const int MAX_N = 100000;
const int MAX_V 1000000000;

int N;
int X[MAX_N];
int L[MAX_N];

void input(){
scanf ("%d", &N);
for(int i = 0; i < N; ++i){

scanf ("%d%d", X + 1, L + i);

P ps[MAX_N];

int solve(){

for(int i = 0; i < N; ++i){

pslil = P(X[i] + L[il, X[i] - L[il);
}
sort(ps, ps + N);
int cur = -MAX_V;
int ans = 0;
for(int i = 0; i < N; ++i){

if (cur <= ps[i].second){

ans++;

cur = ps[i].first;

}

return ans;

int main(){
input O ;
int ans = solve();
printf ("%d\n", ans);

return O;

C: Subarray Sum
The following sequence satisfy the conditions.

o If $<10° 5,8,...,8,S+1,5+1,...,5+ 1.
e If $=10°6,5,...,8,1,1,...,1.

Here S is repeated K times.

D: Swap and Flip

The number of operations required to rearrange the cards in the order p1,ps,...,pn, is equal to the

number of pairs (i, j) such that ¢ < j and p; > p;, which is called the inversion number. Let us consider
how we should rearrange the cards so that we have a non-decreasing sequence facing up.

Assume that Card ¢ comes to the j-th position from the left after some number of operations. Facing

up on this card is:
e A;ifi— jiseven
e B;ifi—jisodd
regardless of the sequence of operations performed.

Based on this fact, we can find the answer with the following dynamic programming;:

® dp,4s,; = The contribution of the cards in mask C {1,2,..., N} to the inversion number when

these cards are brought to the leftmost positions, showing up a non-decreasing sequence

E: Bichromization

Let G be the given graph.

First, let us exclude a case in which the assignment is obviously impossible. If there exists a vertex v
such that D, < D, for every vertex u adjacent to v, the assignment is impossible. It follows from the
following fact. Let v = vy,va,...,v; be the path from the vertex v to a vertex of different color, with

the minimum cost. Then,

o If £ > 2 the path vs,..., v, goes from the vertex v, to a vertex of different color.

o If k£ =2, the path vy, v; goes from the vertex vs to a vertex of different color.

In other cases, the following assignment of colors and weights is possible.

First, for each vertex v, among the vertices adjacent to v, let the vertex u with the minimum value of
D, be p,. (If there are more than one such vertices, we choose the vertex with the minimum index wu.)
Then, for each vertex v in the graph G, let us keep the edge {v,p,}, and remove the other edges. Let
the resulting graph be G’, which will be a forest.

Now, let us assign colors to the vertices and weights to edges in G'. We will decide the colors of vertices
so that, for each v, the vertices v and p, have different colors. Then, we will assign the weight D, to
each edge {v,p,} contained in the forest. At this point, the condition would be satisfied if the given
graph was G’ instead of G.

Lastly, we need to assign weights to the edges not contained in G’. It turns out that we can just assign
10? to each of those edges.

We now have a valid assignment.

F: Monochromization

We will solve the problem in two steps: inventing a way to avoid counting the same pattern multiple
times, then actually computing the count. Lastly, we will summarize the process and show the whole

picture.

Step 1: The normalized form of a painting sequence
For convenience, let us assume that we can do one of the following in one operation:

Operation 1 Choose some rows and a color (black or white). Paint each chosen row in the chosen color.

Operation 2 Choose some rows. For each chosen row, choose a color (black or white) and paint the row in that
color. Here we must use both colors at least once.

Operation 3 Choose some columns and a color (black or white). Paint each chosen column in the chosen color.

Operation 4 Choose some columns. For each chosen row, choose a color (black or white) and paint the column
in that color. Here we must use both colors at least once.

Operation 5 Choose a color (black or white). Choose some rows and some columns, and paint all of them in

the chosen color.

It can be easily seen that the same pattern may be obtained from different sequences of operations.
Let us make sure that, for a given pattern G’, there is a unique sequence of operations that results in

G’, by only considering the painting sequence that satisfies the following rules:

e If there is a row or column containing only one color in G’, we assume that row or column is
painted in the last operation.

e After excluding the row or column above, If there is a row or column containing only one color,
we assume that row or column is painted in the second last operation.

e We continue in this way, until there is no row or column containing only one color.

Step 2: Counting the painting sequences

Let us count the patterns that can be obtained when we fix the set of rows and columns that we
assume are painted. Obviously, this count only depends on the numbers of rows and columns that are
painted. We will introduce two methods to find cnt, ., the number of patterns that can be obtained by
painting r rows and ¢ columns. The first one immediately does DP, and the second one makes a little

more mathematical observations.

e Method 1
We can find ent, . by doing the following DP: (See Step 1 for descriptions of Operations.) dp; ;
= (The number of ways to paint ¢ rows and j columns starting with Operation k)

Note that, when r = H and ¢ = W, the initial states and transitions slightly differ from the other

cases.

e Method 2
First, let us count the patterns that can be obtained from an h x w completely white grid with
the operations in the statement. Those patterns are the patterns that can result from rearranging
rows and columns of a grid divided into two parts by a stair-like line, where one of those parts are
painted black and the other is painted white. We can easily find the number of those patterns,
Dhw-
Let us get back to the original problem. If » = H and ¢ = W, the answer is pg,. Consider
the case ¥ < H or ¢ < W. Let Rp, Ry, Ry be the set of rows painted black, the set of rows
painted white, and the set of rows unpainted, respectively. We will define Cg, Cy, Cy similarly.
The final colors of the squares that are not in Ry x Cg or Rp X Cy do not depend on the order
of operations. Also, those parts are painted in a way that can result from rearranging rows and
columns of a grid divided into two parts by a stair-like line, where one of those parts are painted
black and the other is painted white. Furthermore, the final colors of the squares that are in
Rw x Cp only depend on the relative order of operations on Ry ,Cp, and the final colors of the
squares that are in Rp x Cy only depend on the relative order of operations on Rg, Cy, so we
can treat these two parts individually. Thus, we can count the patterns that can be obtained in

this case using p computed above.

Summary

From the observations above, we can find the answer by summing the values found in Step 2 over all
pairs of a row set rmask and a column set cmask such that there is no row or column containing only

one color in the given grid after removing rmask and cmask.

