第二届 YUC 柚子杯:人类智慧大赛夜见山站

Yomiyama City, May 14th 2024

【比赛简介】

Ciallo, 第二届柚子杯(Yuzusoft Cup)第八站将在 2024 年 5 月 14 日, 位于夜见山中学举行。 比赛采用 IOI 赛制, 时长 240 小时(10 天)。

比赛采用编译选项如下:

对 C++语言 -std=c++14 -02 -static

比赛试题一共有6题,共13页。请检查印刷是否完整无误。

比赛出题人: Misaki(s)。

比赛网址: yuzu-soft.com/yuzucup。

比赛在线测评: hfoj.net/contest。

Hosted By

Prepared By

【题目列表】

题目名称	英文名称	时间限制	空间限制	码长限制	题目类型
飞机调度	plane	1s	512MB	20KB	传统
串子题	string	1s	128MB	20KB	传统
玩原玩的	genshin	1s	128MB	20KB	传统
距离	dis	1s	256MB	20KB	传统
数树	tree	$1s \sim 6s$	256MB	20KB	传统
另一个	another	1s	128MB	20KB	传统

飞机调度 (plane)

【题目描述】

JSOI 王国里有 N 个机场,编号为 1 到 N。从 i 号机场到 j 号机场需要飞行 $T_{i,j}$ 的时间。由于风向,地理位置和航空管制的因素, $T_{i,i}$ 和 $T_{i,i}$ 并不一定相同。

此外,由于飞机降落之后需要例行维修和加油。当一架飞机降落 k 号机场时,需要花费 P_k 的维护时间才能再次起飞。

JS Airways 一共运营 M 条航线,其中第 i 条直飞航线需要在 D_i 时刻从 X_i 机场起飞,不经停,飞往 Y_i 机场。

为了简化问题,我们假设 JS Airway 可以在 0 时刻在任意机场布置任意多架加油维护完毕的飞机;为了减少飞机的使用数,我们允许 JS Airways 增开任意多条临时航线以满足飞机的调度需求。 JYY 想知道,理论上 JS Airways 最少需要多少架飞机才能完成所有这 M 个航班。

【输入格式】

第一行包含两个正整数 N,M;

接下来一行包含 N 个正整数表示每一个机场的飞机维护时间;

接下来 N 行,每行 N 个非负整数,其中第 i 行第 j 个非负整数为 $T_{i,j}$,表示从 i 号机场飞往 j 号机场所需要花费的时间。数据保证 $T_{i,i}=0$;

接下来 M 行,每行三个正整数,其中第 i 行为 X_i, Y_i, D_i ,表示第 i 条航线的起飞机场,降落机场,以及起飞时间。数据保证 $X_i \neq Y_i$ 。

【输出格式】

一行一个正整数,表示 JS Airways 理论上最少需要的飞机数。

【测试样例】

样例输入	样例输出
3 3	2
100 1 1	
0 1 1	
1 0 5	
2 1 0	
1 2 1	
2 1 1	
3 1 9	
3 3	3
100 1 1	
0 1 1	
1 0 5	
2 1 0	
1 2 1	
2 1 1	
3 1 8	

【样例说明1】

在样例一中,JS Airways 可以在 0 时刻在 2 号机场安排一架飞机并执飞第 2 条航线($2 \rightarrow 1$)。此外还需要在 0 时刻在 1 号机场安排一架飞机,这架飞机首先执飞第 1 条航线($1 \rightarrow 2$),然后通过临时新增一条航线从 2 号机场起飞飞往 3 号机场,降落 3 号机场之后执飞第 3 条航线($3 \rightarrow 1$)。

【样例说明2】

在第二个样例中,执行完第 1 条航线的飞机无法赶上第 3 条航线的起飞时间,因此 JS Airways 必须使用 3 架不同的飞机才能完成所有的航班。

【数据范围】

对于 30% 的数据,满足 $N, M \le 10$;

对于 60% 的数据,满足 $N, M \le 100$;

对于全部数据,满足 $1 \le N, M \le 500$, $0 \le P_i, T_{i,j} \le 10^6$, $1 \le D_i \le 10^6$ 。

串子题(string)

【题目描述】

给定 n, a, b, p, 其中 n, a 互质。

定义一个长度为 n 的 01 串 $c_0c_1\cdots c_{n-1}$,其中 c_i 等于 0 当且仅当 $(ai+b) \bmod n < p$ 。 给定一个长为 m 的小 01 串,求出小串在大串中出现了几次。

【输入格式】

第一行包含整数 n, a, b, p, m。 保证 n 和 a 互质。

第二行一个长度为m的01串。

【输出格式】

一个整数,表示小串在大串中出现了几次。

【测试样例】

样例输入	样例输出	
9 5 6 4 3	3	
101		

【样例解释】

不难计算得出 c = 101011010。

【数据范围】

对所有数据,保证 $2 \le n \le 10^9$, $1 \le p, a, b, m < n$, $1 \le m \le 10^6$ 。保证 n 和 a 互质。

玩原玩的 (genshin)

【题目背景】

小 O 一直都很崇拜小 M。

【题目描述】

有一天小 O 和小 M 在打多校,突然开始讨论怎么样的阵容比较厉害。小 O 觉得一个阵容,将他们的等级从低到高排序后,攻击力应该是递增的。小 O 就问小 M 这个阵容最多有几个人。

不过小 M 觉得这个问题实在太 SB, 就改变了条件, 他认为等级从低到高排序后, 对于任意两个排序后相邻的英雄, 等级低的英雄的攻击力应该不大于等级高的英雄的力量, 等级高的英雄的攻击力应当不小于等级低的英雄的智力。

现在小 O 想知道若干个英雄中,最多能选出多少个英雄加入阵容。

【输入格式】

第一行 n 表示有 n 个英雄。

接下来 n 行,每行 4 个整数 l, s, w, a,分别表示该英雄的等级、力量、智力、攻击力。

【输出格式】

一个数,表示最多能选出的英雄个数。

【测试样例】

样例输入	样例输出
3	2
1 2 3 1	
1 2 3 1 2 1 2 2	
3 1 3 3	

【样例解释】

选择第 1 个和第 3 个英雄,符合条件。对于第 1 个和第 2 个英雄,第 2 个英雄的攻击力小于第 1 个英雄的智力,所以不能同时存在。

【数据范围】

对所有数据满足 $n \le 10^5$, $l, s, w, a \le 10^8$, l 互不相同。

距离 (dis)

【题目描述】

小 O 有一些无向连通图 $G_1, G_2, ..., G_K$ $(2 \le K \le 5 \cdot 10^4)$ 。对于每一个 $1 \le i \le K$, G_i 有 N_i $(N_i \ge 2)$ 个编号为 $1...N_i$ 的结点与 M_i $(M_i \ge N_i - 1)$ 条边。 G_i 可能含有自环,但同一对结点之间不会存在多条边。 现在小 M 用 $N_1 \cdot N_2 \cdots N_K$ 个结点建立了一个新的无向图 G,每个结点用一个 K 元组 $(j_1, j_2, ..., j_K)$ 标号,其中 $1 \le j_i \le N_i$ 。若对于所有的 $1 \le i \le K$, j_i 与 k_i 在 G_i 中连有一条边,则在 G 中结点 $(j_1, j_2, ..., j_K)$ 和 $(k_1, k_2, ..., k_K)$ 之间连有一条边。 定义 G 中位于同一连通分量的两个结点的「距离」为从一个结点到另一个结点的路径上的最小边数。计算 G 中结点 (1,1,...,1) 与所有与其在同一连通分量的结点的距离之和,对 $10^9 + 7$ 取模。

【输入格式】

输入的第一行包含 K,为图的数量。

每个图的描述的第一行包含 N_i 和 M_i , 以下是 M_i 条边。

为提高可读性,相邻的图之间用一个空行隔开。输入保证 $\sum N_i \leq 10^5$ 以及 $\sum M_i \leq 2 \cdot 10^5$ 。

【输出格式】

输出结点 (1,1,...,1) 与所有该结点可以到达的结点的距离之和,对 10^9+7 取模。

【测试样例】

样例输入	样例输出
2	4
2 1	
1 2	
4 4	
1 2	
2 3	
3 4	
4 1	
3	706
4 4	
1 2	
2 3	
3 1	
3 4	
6 5	
1 2	
2 3	
3 4	
4 5	
5 6	
7 7	
1 2	
2 3	
3 4	

样例输入	样例输出
(continue) 4 5	
4 5	
5 6	
6 7	
7 1	

【样例1解释】

G 包含 $2 \cdot 4 = 8$ 个结点, 其中 4 个结点不与结点 (1,1) 连通。有 2 个结点与 (1,1) 的距离为 1, 1 个结点的距离为 2。所以答案为 $2 \cdot 1 + 1 \cdot 2 = 4$ 。

【样例2解释】

G 包含 $4 \cdot 6 \cdot 7 = 168$ 个结点,均与结点 (1,1,1) 连通。对于每一个 $i \in [1,7]$,与结点 (1,1,1) 距离为 i 的结点数量为下列数组中的第 i 个元素: [4,23,28,36,40,24,12]。

【数据范围】

- 测试点 1−2 是样例。
- 测试点 3-4 满足 $\prod N_i \leq 300$ 。
- 测试点 5-10 满足 $\sum N_i \leq 300$.
- 测试点 11-20 没有额外限制。

数树 (tree)

【题目背景】

一个风和日丽的早晨,小 S 带着他的好朋友小 A 在小树林里面数树。看着满树林的树,小 S 灵感一闪,想到了一道题目。

【题目描述】

现在有 n 个点,每个点有一个权值 v_i 。

小 S 想要小 A 从中选一些点组成一个集合,设集合 $S=\{d_1,d_2,...,d_m\}(1\leq m\leq n)$ 。 当然,小 A 还需要保证这些点能形成一颗树,且 d_i 的度数为 $v_{d_i}(i\in[1,m])$ 。

• 节点的度数:与它相邻的节点的个数。

小S想问小A有多少种满足条件的方案。

小 A 深知自己肯定不会这道题目, 所以他就拿来问你了。

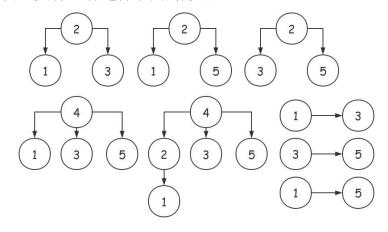
由于方案数可能很大,所以请对998244353取模。

【输入格式】

第一行,一个整数 n。

第二行, n 个整数 $v_1, v_2, ..., v_n$

【输出格式】


一行一个整数,表示方案数。

【测试样例】

样例输入	样例输出
3	3
1 1 1	
5	8
1 2 1 3 1	
8	44
1 2 1 2 4 1 3 1	
50	176873472
8 1 10 2 2 1 2 1 1 2 5 1 11 6 13 13 10	
4 1 13 11 2 2 11 13 10 1 1 4 3 4 2 15	
2 2 1 1 2 1 7 14 2 2 4 13 2 7 5 6 10	

【样例解释】

- 对于样例 1,在三个节点中任选两个即可,答案为 $C_3^2=3$ 。
- 对于样例 2,如图,共有 8 种选择节点的方法。

Page 8 of 13

【数据范围】

Subtask 编号	$n \leq$	特殊性质	得分
1	20	无	11
2	50	无	12
3	300	无	10
4	2500	无	17
5	4×10^4	无	6
6	3×10^{5}	$v_i \le 3$	8
7	3×10^{5}	数据随机	7
8	5×10^{5}	无	29

对于 100% 的数据, $2 \le n \le 5 \times 10^5$, $1 \le v_i \le n$ 。 Subtask 7 中"数据随机"指:对于所有 v_i , $\frac{1}{3}$ 的概率为 1, $\frac{2}{3}$ 的概率为 [2,n] 中等概率选择一个数。

对于前4个Subtask,时间限制1s。

对于第5个Subtask,时间限制3s。

对于后3个Subtask,时间限制6s。

对于所有测试点,空间限制 256MB。

另一个 (another)

【题目背景】

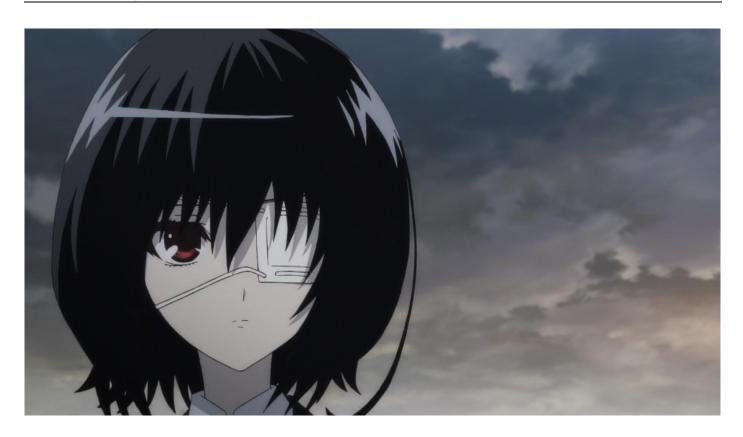
......你知道 misaki 吗? 三年三班的 misaki——个与之相关的传说。

虽然不清楚是写成怎样的汉字。也许可能是姓氏,所以不一定是女生。曾经就有一个学生叫这个名字,有关 misaki 的话题也是众说纷纭,就在距今二十六年前。

顺便一提,那一年也是札幌冬季奥林匹克运动会的举办年。另外浅间山庄事件好像也是...... 浅间山庄——?

我说你……算了。总而言之,在二十六年前,我们学校的三年三班里有个叫 misaki 的学生。我说……你真的没有听说过这件事情吗?

嗯……稍微等一下。如果说不是 misaki 而是 masaki 的话,我倒是略有耳闻。masaki? 嗯。好像也有这么一说。你是从哪里听来的?


社团的前辈那儿。

是怎样的传说?

虽然不清楚是不是二十六年前的事情,但当时在三年级里有个叫 masaki 的学生……啊,不过从我听到的感觉来说,那个 masaki 是个男生。然后,听说在那一年那个人所在的班级里发生了令人匪夷所思的事情。但那件事情需要保密,不能随便和别人谈论。所以,只能说到这儿了。

榊原这个名字, 不禁会让人联想到'死', 而且还不是单纯的'死', 是以学校为舞台, 残酷无情的死。 是距离死一最近的地方, 是距最好不要在和我说话了。

你很在意我的左眼为什么一直带着眼罩吧, 那就给你看看吧, 这个眼罩底下。

虽然有时候也会想为什么是我?如果不是我的话, 我也必须和大家一起把那人当作是"不存在之人", 与其如此, 自己被孤立出来也许更好吧。

我的左眼是在四岁左右的时候消失的。

.....见崎,

我觉得你的左眼很漂亮

死亡一点也不温柔,只有无尽的黑暗和孤独。

就算联系得再紧密,人也是孤独的。

请多关照,

榊原君。

这是中学的最后一个暑假了,

大家一起来拍张照片好吗?

【题目描述】

给定一棵 n 个节点的有根树,第 i 个点的编号是 i。

有 m 次询问,每次询问给出 l,r,x,求有多少点编号的二元组 (i,j) 满足 $l \le i < j \le r$ 且 i 和 j 的最近公共祖先是节点 x。

【输入格式】

第一行三个数 n, m, rt,其中 rt 表示根节点的编号。 之后 n-1 行,每行两个数 u, v 表示一条边。 之后 m 行,每行三个数 l, r, x 表示一次询问。

【输出格式】

共 m 行,表示每个询问对应的答案

【测试样例】

样例输入	样例输出
10 10 7	0
4 2	2
10 4	0
3 2	1
6 10	7
9 2	0
7 3	2
1 4	0
8 2	1
5 3	0
8 10 10	
2 6 2	
3 6 2	
4 6 4	
3 10 2	
8 8 10	
3 10 4	
2 3 2	
2 6 4	
1 7 10	

【数据范围】

对于 100% 的数据, $1 \le n, m \le 2 \cdot 10^5$, $1 \le l, r, x \le n$.

【样例解释】

- 262: 符合条件的有 (2,4), (2,6)。
- 4 6 4: 符合条件的有 (4,6)。
- 3 10 2: 符合条件的有 (4,8), (4,9), (6,8), (6,9), (8,9), (8,10), (9,10)。
- 3 10 4: 符合条件的有 (4,6), (4,10)。
- 264: 符合条件的有 (4,6)。