# 第二届 YUC 柚子杯:人类智慧大赛幻想乡站

# Hakurei Jinja, Mar 24th 2024

## 【比赛简介】

Ciallo~, 第二届柚子杯(yuzusoft cup)第三站将在 2024 年 3 月 24 日在幻想乡地区的博丽神社举行。 比赛采用 IOI 赛制。

出题人: ZUN。

比赛所采用的的编译选项如下:

对 C++语言 -std=c++14 -02 -static

比赛试题一共有9页,包含6道试题。请检查题目印刷是否完整。

# Host By



# Prepare By



## 【试题列表】

| 题目名称                    | 英文名称        | 时间限制 | 空间限制  | 码长限制 | 题目类型 |
|-------------------------|-------------|------|-------|------|------|
| 馈赠                      | gift        | 4s   | 512MB | 20KB | 传统   |
| 串                       | string      | 1s   | 256MB | 20KB | 传统   |
| 人形演舞                    | dance       | 1s   | 125MB | 20KB | 传统   |
| 雪的魔法                    | magic       | 1.2s | 512MB | 20KB | 传统   |
| 青春猪头少年<br>不会梦到兔女<br>郎学姐 | cloverworks | 2s   | 500MB | 20KB | 传统   |
| 死亡结局                    | deadend     | 2s   | 512MB | 20KB | 传统   |

# 馈赠 (gift)

### 【题目描述】

小 M 马上就要 AK (All killed,指使本场比赛的全部题目 AC) 本场人类智慧大赛第三站(幻想 乡)然后离场了。临走前,小 I 打算给小 M 一共 n 个字符串  $s_1, s_2, ..., s_n$  作为纪念。在本题中,我们将这 n 个字符串称作「模板串」。

小 M 本身有 m 个字符串  $t_1, t_2, ...t_m$ 。在本题中,我们将这 m 个字符串称为「查询串」。 小 I 的礼物不是无条件的,他有 q 个问题,每个问题给定两个参数 x, y,要求回答他:一共有多少个模板串  $s_i$ ,满足  $s_i$  既是  $t_x$  的子串,也是  $t_y$  的子串?

只有回答对这 q 个问题,小 M 才能得到 小 I 馈赠的礼物。请你帮帮小 M,回他小 I 的问题。我们称一个字符串 t 是 s 的子串,当且仅当将 s 的开头若干个(可以为 0 个)连续字符和结尾若干个(可以为 0 个)连续字符删去后,剩下的字符串和 t 相同。例如,我们称 ab 是 abc 的子串,但 ac 不是 abc 的子串。

### 【输入格式】

第一行有三个整数,依次表示模板串个数 n, 查询串个数 m, 以及询问的个数 q。

接下来 n 行,每行一个字符串,依次表示模板串  $s_1, s_2, ... s_n$ 。

接下来 m 行,每行一个字符串,依次表示查询串  $t_1,t_2,...t_m$ 。

接下来 q 行,每行两个整数 x,y,表示一个询问。

### 【输出格式】

对于每次询问,输出一行一个整数表示答案。

### 【测试样例】

| 样例输入  | 样例输出 |
|-------|------|
| 3 2 1 | 2    |
| a     |      |
| b     |      |
| С     |      |
| ab    |      |
| bac   |      |
| 1 2   |      |
| 3 3 3 | 1    |
| aaba  | 2    |
| baba  | 1    |
| aba   |      |
| ababa |      |
| aabab |      |
| babaa |      |
| 1 2   |      |
| 1 3   |      |
| 2 3   |      |

## 【数据规模】

对于全部测试点,保证  $1 \le n, m, q, |s_i|, |t_i| \le 10^5$ ,且模板串的长度之和、查询串的长度之和均不超过  $10^5$ ,即  $\sum_{i=1}^n |s_i|, \sum_{i=1}^m |t_i| \le 10^5$ ,其中 |x| 表示字符串 x 的长度。保证输入的字符串只含有小写字母, $1 \le x \ne y \le m$ 。

# 串 (string)

### 【题目描述】

你有两个字符串 s,t,它们其中仅包含字母 a 和 b。你可以多次进行如下操作:选出一个 s 的前缀和一个 t 的前缀并交换它们。(注意,这个前缀既**可以为空**也可以为整个串)

你的任务是找出一个操作序列使得进行这些操作后,一个字符串只包含字符 a, 而另一个只包含字符 h。

你应该尽可能的进行最少的操作次数,但非最优解仍可能得到一部分分数。

### 【输入格式】

输入两行为两个字符串 s,t。

### 【输出格式】

输出第一行为一个整数  $n (0 \le n \le 5 \times 10^5)$  , 表示操作总数。 接下来的 n 行,每行包含两个整数  $a_i, b_i$  ,分别为 s, t 在这次交换中的前缀长度。 如果有多种可能的方案,则可以输出任意一种。

### 【测试样例】

| 样例输入        | 样例输出 |
|-------------|------|
| bab<br>bb   | 2    |
| bb          | 1 0  |
|             | 1 3  |
| bbbb<br>aaa | 0    |
| aaa         |      |

### 【样例1解释】

在这个样例中,首先把第一个串 1 个长度的前缀与第二个串 0 个长度的前缀交换,即将 b 插入第二个串开头。这时两个串变成了 ab 和 bbb。接下来把第一个串 1 个长度的前缀与第二个串 3 个长度的前缀交换,即交换 a 和 bbb,此时两个串变成了 bbbb 和 a ,达成目标。

### 【计分策略】

设 n 为你给出的操作数量,m 为标准答案,本题使用 SPJ。

- 如果所有任务中 n=m, 那么将得到 100% 的分数。
- 如果所有任务中 n < m + 2,那么将得到 70% 的分数。(四舍五入到最接近的整数)
- 如果所有任务中  $n \leq 2m + 2$ ,那么将得到 50% 的分数。(四舍五入到最接近的整数)
- 如果所有任务中  $n < 5 \times 10^5$ ,那么将得到 30% 的分数。(四舍五入到最接近的整数)
- 如果至少一个任务中  $n > 5 \times 10^5$ , 那么将得到 0% 的分数。

### 【数据范围】

对于 100% 的数据,保证  $1 \le |s|, |t| \le 2 \times 10^5$ ,|s|, |t| 分别代表 s,t 的长度,且保证至少有一个串中包含至少一个字符 a,至少一个串中包含至少一个字符 b。

|   | 分数 | 限制                                       |
|---|----|------------------------------------------|
| 1 | 5  | $1 \le  s ,  t  \le 6$ ,这两个字符串中共含有一个字符 a |
| 2 | 10 | $1 \le  s ,  t  \le 6$                   |
| 3 | 20 | $1 \le  s ,  t  \le 50$                  |
| 4 | 20 | $1 \le  s ,  t  \le 250$                 |
| 5 | 20 | $1 \le  s ,  t  \le 2 \times 10^3$       |
| 6 | 25 | 无特殊限制                                    |

# 人形演舞 (dance)

### 【题目描述】

小 I 与小 M 之间有一个博弈:

首先给定一个**可重正整数集合** V, 所有的数字都是在 [1,m] 之间。每次一个人可以选取  $x \in V, y \in [1,x]$ , 且  $x \oplus y \in [0,x)$ , 然后把 x 变为  $x \oplus y$ 。

当一个人不能操作时,则视作失败。假定小 I 和小 M 都使用最优策略。现在小 I 想知道自己先手时获胜的方案数对 998244353 取模后是多少。

### 【输入格式】

一行,两个整数 |V|, m。

### 【输出格式】

一行,表示答案。

### 【测试样例】

| 样例输入 | 样例输出 |
|------|------|
| 4 5  | 312  |

### 提示

对于 100% 的数据,  $|V| \le 10^{18}, m \le 10^6$ 。

# 雪的魔法 (magic)

### 【题目背景】

小 I 是一个雪魔法师。只要他挥起魔法棒,念出神秘的咒语,雪花就会从天而降,在地面上一点一点地积累起厚厚的雪层。正因小 I 魔力高超,上帝任命小 I 掌管整个世界的雪。

某天,上帝给 小 I 下达了一个任务: 他需要让一个长为 n 的地面上下雪。其中,第 i 个位置的 积雪厚度需要达到  $a_i$  ( $a_i \ge 0$ , "达到  $a_i$ " 指不能低于也不能超过  $a_i$ )。然而,上帝不知道的是,小 I 的能力有限,他每次施法只能让长度  $\le m$  的区间内下雪 1s,使得这个区间内的积雪厚度增加 1。由于任务急迫,小 I 想要知道,若要完成某些区间的任务,他至少要施法多少次。

### 【题目描述】

定义初始数列为每个数字都为 0 的数列。

定义一次操作为将数列的一个区间中每一个数的值增加 1, 规定该区间的长度不能超过 m。

给定一个长度为 n 的数列 a, 第 i 个数为  $a_i$ 。

你需要回答 q 次询问。每次询问给定 l,r,你需要回答将一个长度为 r-l+1 的初始数列变为 a 中的 [l,r](即数列  $a_l,\ a_{l+1},\ \cdots,\ a_r$ )至少需要多少次操作。

### 【输入格式】

第一行三个整数 n, m, q。

第二行 n 个整数, 第 i 个为  $a_i$ 。

接下来 q 行,每行两个整数,表示 l,r。

### 【输出格式】

q 行,每行一个整数,表示至少需要的操作次数。

### 【测试样例】

| 样例输入       | 样例输出 |
|------------|------|
| 5 4 1      | 2    |
| 1 1 2 1 1  |      |
| 1 5        |      |
| 10 3 3     | 22   |
| 4812974135 | 10   |
| 1 10       | 9    |
| 3 8        |      |
| 5 5        |      |

### 【样例 1 解释】

一个长度为 5 的初始数列为 00000。

第一次操作为,将区间 [1,3] 中每一个数,即第 1、2、3 个数的值分别增加 1。经过该操作后,数列变为 11100。

第二次操作为,将区间 [3,5] 中每一个数,即第 3、4、5 个数的值分别增加 1。经过该操作后,数列变为 11211。

### 【数据范围】

- Subtask 1 (1 point) : m = 1.
- Subtask 2 (4 points) : m = n.
- Subtask 3 (10 points) :  $n, q \leq 300$ .
- Subtask 4 (10 points) :  $n, q \le 5 \times 10^3$ .
- Subtask 5 (15 points) :  $m \le 5$ .

- Subtask 6 (15 points) :  $m \le 100$ .
- Subtask 7 (20 points):  $n, q \le 5 \times 10^4$ .
- Subtask 8 (25 points): 无特殊限制。

对于 100% 的数据,保证  $1 \le m \le n \le 10^5$ ,  $1 \le q \le 10^5$ ,  $0 \le a_i \le 10^9$ ,  $1 \le l \le r \le n$ 。

## 青春猪头少年不会梦到兔女郎学姐(cloverworks)

### 【题目描述】

若干个正整数排成一个序列,其中数字 i 的出现次数为  $c_i$ ,对于每一个这样的序列,定义他的权值如下:

把这个序列首尾相接放在一个圆上,把这些数字分成若干相邻的段,使得每段都是在圆上相邻的数字,任意两段没有公共的元素,每一段中的数字都相同,相邻段中的数字不同,则这个序列的权值定义为所有段的长度之积。

求所有的序列的权值和对 998244353 取模。

注: 虽然计算序列的权值的时候是圆排列,但互为循环排列的不同序列仍然被认为是不同的,如(1,2,1,2) 和(2,1,2,1) 被认为是不同的序列。

### 【输入格式】

若干行,第一行一个正整数 n ,表示数字种类数。 第二行 n 个正整数  $c_i$ ,表示第 i 个数字的出现次数。

### 【输出格式】

一行,表示所有出现次数符合条件的序列的权值和对 998244353 取模的值。

#### 【测试样例】

| 样例输入           | 样例输出      |
|----------------|-----------|
| 2              | 18        |
| 2 2            |           |
| 6              | 515320459 |
| 7 8 9 10 11 12 |           |

#### 【样例1解释】

合法序列为 (1,1,2,2), (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1), (2,2,1,1)。 权值分别为 4,1,4,4,1,4,和为 18。

### 【数据范围】

对所有数据,保证:  $\sum c_i \le 2 \times 10^5, 2 \le n \le 2 \times 10^5$ 。

## 死亡结局 (deadend)

### 【题目背景】



It's not a DEAD END!

### 【题目描述】

给一棵边权为 1 的树和一个常数 C, 节点用 1 到 n 的整数表示。

定义  $\operatorname{dist}(a,b)$  为节点 a,b 在树上的距离,即 a 到 b 的简单路径上的边权和,特别地,  $\operatorname{dist}(a,a)=0$ 。

每次查询的时候给出一个区间 [l,r], 查询有多少个 C-块, 定义如下:

对任意两个节点 a,b, 定义 a,b 是 C-连通的, 当且仅当存在一个长为 t 的节点序列  $\{v_i\}$ , 满足:

- 1.  $v_1 = a$
- 2.  $v_t = b$
- 3. 对任意  $1 \le i \le t-1$ ,  $dist(v_i, v_{i+1}) \le C$
- 4. 对任意  $1 \le i \le t$ ,  $l \le v_i \le r$

定义"C-块"为一个点集 S,满足:

- 1. 对任意 a 属于 S, b 属于 S 的补集, a, b 不 C-连通
- 2. 对任意 a,b 属于 S, a 和 b C-连通
- 3. 对任意 a 属于 S, 有  $l \le a \le r$

### 【输入格式】

第一行三个数 n, m, C 依次表示树的节点个数, 询问次数, 还有常数 C;

第二行共 n-1 个数  $p_2$   $p_3$  ...  $p_n$ ,表示对于  $2 \le i \le n$  的整数 i, i 和  $p_i$  之间有一条无向边;保证输入的数据构成一棵树;

之后 m 行,每行两个数 l r,表示这次询问的区间是 [l,r],保证  $l \leq r$ ;

### 【输出格式】

共 m 行,依次回答各组询问:每行输出一行一个整数表示这组询问的答案。

## 【测试样例】

| 样例输入              | 样例输出 |
|-------------------|------|
| 10 9 2            | 1    |
| 1 1 1 2 3 4 1 1 1 | 1    |
| 1 3               | 2    |
| 2 4               | 3    |
| 3 5               | 3    |
| 4 6               | 3    |
| 5 7               | 2    |
| 6 8               | 1    |
| 7 9               | 1    |
| 8 10              |      |
| 5 5               |      |

# 【数据范围】

对于所有数据,保证  $n, C \leq 3 \times 10^5, m \leq 6 \times 10^5$ 。