第二届 YUC 柚子杯:人类智慧大赛湛江站

Guangdong Ocean University, Mar 19th 2024

【比赛简介与注意事项】

Ciallo~ 第 2 届柚子杯第二站将在 2024 年 3 月 19 日广东省湛江市的广东海洋大学(GDOU)举行,比赛采用 IOI 赛制。

出题人:朝武ともたけ・芳乃*しの。

比赛的编译语言选项如下:

对 C++ 语言	-std=c++14 -O2 -static
----------	------------------------

比赛题面文件一共有 12 页, 6 题。请检查页面是否完整无误。

Host By

Prepare By

【题目列表】

题目名称	英文名称	时间限制	空间限制	码长限制	题目类型
杜老师	dls	5s	500MB	20KB	传统
连通图计数	count	1s	512MB	20KB	传统
原神攻略	genshin	$1s \sim 4.5s$	512MB	20KB	传统
醒来	wake	1s	512MB	20KB	传统
寻宝	treasure	1s	256MB	20KB	传统
狂気沈殿	crazy	3s	64MB	20KB	传统

杜老师(dls)

【题目描述】

杜老师可是要打 $+\infty$ 年 World Final 的男人,虽然规则不允许,但是可以改啊!

但是今年 WF 跟 THUSC 的时间这么近, 所以他造了一个 idea 就扔下不管了......

给定 L, R,求从 L 到 R 的这 R - L + 1 个数中能选出多少个不同的子集,满足子集中所有的数的乘积是一个完全平方数。特别地,空集也算一种选法,定义其乘积为 1。

由于杜老师忙于跟陈老师和鏼老师一起打 ACM 竞赛, 所以, 你能帮帮杜老师写写标算吗?

【输入格式】

从标准输入读入数据。

每个测试点包含多组测试数据。

输入第一行包含一个正整数 T $(1 \le T \le 100)$,表示测试数据组数。

接下来 T 行,第 i+1 行两个正整数 L_i, R_i 表示第 i 组测试数据的 L, R_i 保证 $\leq L_i \leq R_i \leq 10^7$ 。

【输出格式】

输出到标准输出。

输出 T 行,每行一个非负整数,表示一共可以选出多少个满足条件的子集,答案对 998244353 取模。

【测试样例】

样例输入	样例输出	
3	16	
1 8	16	
12 24	947158782	
1 1000000		
6	953622420	
3761870 4957871	551347610	
2262774 4279409	583188135	
3027437 5896884	582472626	
3884310 5021632	190680894	
3373244 5464739	268824018	
5063504 5368121		

【样例解释】

对于 L = 1, R = 8, 对应的 16 种选法为:

- 1. 空集
- 2. 4
- 3. 3,6,8
- 4. 3,4,6,8
- 5. 2,8
- $6. \quad 2,4,8$
- 7. 2,3,6
- 8. 2,3,4,6
- 9. 1
- 10. 1,4
- 11. 1,3,6,8

- 12. 1,3,4,6,8
- 13. 1,2,8
- 14. 1,2,4,8
- 15. 1,2,3,6
- 16. 1,2,3,4,6

			_		
	测试点编号	$R_i \leq$	$T \leq$	$\sum R_i - L_i + 1 \le$	特殊约束
	1~2	30	10	10^{3}	无特殊约束
<u></u>	3	100	10	10^{3}	保证答案不超过 5 × 10 ⁶
	4	100	10	10^{3}	无特殊约束
	5~6	10^{3}	10	10^{3}	$R-L \le 22$
	7~8	10^{3}	10	10^{3}	保证答案不超过 2 × 10 ⁶
<u></u>	9~10	10^{3}	10	5×10^3	无特殊约束
	11~12	10^{6}	10	10^{7}	$R - L \ge 999990$
	13~14	10^{6}	10	10^{7}	无特殊约束
	15~20	10^{7}	100	$({\rm Id} - 14) \times 10^7$	无特殊约束

连通图计数 (count)

【题目背景】

Ysuperman 模板测试的多项式题。

(数据删除)

【题目描述】

请问有多少个 n 个点 m 条边的无向简单连通图,无自环无重边,满足删掉编号为 i 的点后无向图 被分成了 a_i 个连通块。特殊地,我们保证 $n-1 \le m \le n+1$,且答案不为 0。

答案对 998,244,353 取模。

【输入格式】

第一行两个整数 n, m。

第二行 n 个整数, 第 i 个整数为 a_i 。

【输出格式】

输出一行一个整数,表示答案对998,244,353取模得到的结果。

【测试样例】

样例输入	样例输出
4 4	3
2 1 1 1	
4 5	6
1 1 1 1	
5 6	27
1 1 2 1 1	
6 6	30
1 2 3 1 1 1	
6 5	4
2 1 1 1 1 4	
8 7	360
1 1 3 1 2 2 2 2	
8 8	2520
1 1 1 1 2 2 2 2	
8 9	9240
1 1 1 1 1 1 2 3	
10 11	105840
1 1 1 4 2 2 2 1 1 1	
12 13	518269694
1 1 1 1 1 1 1 1 1 1 1 1	

【样例1解释】

共有三种可能的图,连的四条边分别为:

- 1. (1,2), (1,3), (1,4), (2,3).
- 2. (1,2), (1,3), (1,4), (2,4)
- 3. (1,2), (1,3), (1,4), (3,4).

测试点编号	n, m	特殊性质
$1 \sim 4$	m = n - 1	无
$5\sim 6$	$m=n, n \leq 7$	无
$7\sim 8$	m = n	$a_i = 1$
$9 \sim 12$	m = n	无
$13 \sim 14$	$m=n+1, n \leq 7$	无
$15\sim16$	m = n + 1	$a_i = 1$
$17 \sim 20$	m = n + 1	无

对于所有的数据,满足 $4 \le n \le 10^5$, $n-1 \le m \le n+1$, $1 \le a_i < n$, $n \le \sum_{i=1}^n a_i \le 2n-2$,且 保证答案非 0。

原神攻略 (genshin)

【题目背景】

小 A 正在读一篇文章 ——《原神攻略》

【题目描述】

不幸的是,这篇文章是用英语写的。小 A 的视力很糟糕,同时词汇量也很小。

具体地,这篇文章可以用一个字符串 t 表示。同时给出另一个字符串 s: 小 A 所有认识的单词,都是 s 的长度不小于 k 的子串。

一段文字 T 被称为「可读懂的」,当且仅当其能被分割成若干个小 A 读得懂的单词。例如当 k=2,s=abcd 时,abcd/abc 和 cd/ab/bc/bcd 就是可读懂的,而 abcc 和 tzcaknoi 就是不可读懂的。接下来,小 A 会进行 g 次行动:

- Type 1: 擦亮眼睛。具体地,小 A 会选择文章 t 的一个子串 t[l:r],并将其修改为字符串 x(|x|=r-l+1)。
- Type 2: 阅读文章。具体地,小 A 会选择文章 t 的一个子串 t[l:r] 并进行阅读。对于每次 Type 2 的操作,你需要告诉小 A 他能不能看懂这段文字。能够读懂则输出 Yes,否则输出 No。

【输入格式】

第一行一个正整数 T,表示该点 Subtask 编号。

第二行一个字符串 s。 第三行一个字符串 t。 第四行一个正整数 k。 第五行一个正整数 q。接下来 q 行,每行表示一个询问。首先给出操作参数 op:

- 若 op = 1,则接下来两个正整数 l, r 与一个字符串 x,表示将 t[l:r] 修改为 x。
- 若 op = 2,则接下来两个正整数 l, r,表示一次询问。

【输出格式】

对于每个询问输出一行字符串: 若可以读懂则输出 Yes, 否则输出 No。

【测试样例】

样例输入	样例输出
0	No
bbccabcacbcbac	No
cbcacbcabbcabca	Yes
3	Yes
17	Yes
2 1 2	Yes
2 1 4	Yes
2 1 6	No
2 2 15	No
2 6 15	No
2 9 15	No
1 4 13 babbccabbd	Yes
2 1 11	No
2 1 12	No

样例输入	样例输出
(continue)	(continue)
2 1 15	Yes
2 5 11	
1 13 15 cab	
2 3 12	
2 7 10	
2 11 15	
2 10 14	
2 9 14	

ਹੋਰ n=|s|, m=|t|, $L=\sum |x|$ \circ

Subtask	$n \leq$	$m \leq$	$L \leq$	$q \leq$	$k \leq$	分值
0						0 point
1	70	70		70		10 points
2	200	200		200		10 points
3	10^{3}	10^{3}		10^{3}		10 points
4					1	10 points
5	2×10^{5}	10^{5}	0	2×10^{4}	5	15 points
6	2×10^{5}	10^{5}	5×10^{4}	2×10^{4}	5	10 points
7					6	15 points
8						20 points

对于 100% 的数据, $1 \le n \le 3 \times 10^6$, $1 \le L \le 3 \times 10^5$, $1 \le m \le 2 \times 10^5$, $1 \le q \le 10^5$, $1 \le k \le 8$ 。保证 |x| = r - l + 1,且字符集为 $[\mathbf{a}, \mathbf{i}]$ 。

Subtask 0 是样例及 Hack 数据。

- Subtask 0~3 时间限制 1s。
- Subtask 4~6 时间限制 1.5s。
- Subtask 7 时间限制 3s。
- Subtask 8 时间限制 4.5s。

【提示】

字符串 t' 是 t 的子串,当且仅当我们能够从 t 的开头和结尾删除若干个字符(可以不删除)并得到 t'。

定义 t[l:r] 表示 $t_lt_{l+1}\cdots t_{r-1}t_r$ 所形成的字符串。

读入文件较大,请注意 IO 优化。

醒来 (wake)

【题目背景】

"那羡慕的烟火去哪了,那信任的朋友疏远了。

我年幼时坚持过什么,你们还记不记得。"

回想自己儿时的样子,已和现在大不相同了;但想想昨天的自己,却与今天没什么差异。这不经意的改变,让我们已经是另一个样子了。

【题目描述】

赫尔德用一个长为 r-l+1 的数列 a 来描述自己性格的变化。但赫尔德记忆不好,她已经记不清 a 了,只记得非负整数 l,r,其中 l < r。

不过,她还记得:

- 1. $l \le a_i \le r$,且 a_i 互不相同。换言之,a 是一个 $l \sim r$ 的排列。
- 2. 对于所有 $1 \le i \le r l$,有 popcount $(a_i \text{ xor } a_{i+1}) = 1$ 。换言之,a 中相邻的两个数二进制下只相差一位。

请你告诉她一个可能的 a, 或告诉她其实不存在这样的 a。

【输入格式】

仅一行,两个非负整数 l,r。

【输出格式】

第一行, 若有解输出 Yes, 若无解则输出 No。不区分大小写。

若你输出了 Yes, 则你可以用以下两种格式之一输出你的构造:

- 1. 输出一行 r-l+1 个数,表示你构造的排列。
- 2. 先输出一个数,表示你构造排列的第一个数。接下来输出一个长为 r-l 的字符串,对于第 i 个字符,若你构造排列第 i 与 i+1 个数相差了 2^k ,则你应该输出第 k+1 个小写英文字母,即 (char)('a'+k)。

注意,若你使用格式 1 输出,你可能无法通过最后两个子任务。若您获得了 UKE 的评测结果,请考虑修改输出答案的格式。

【评分方法】

本题采用自定义校验器检测你的输出。

若你对解的存在性判断错误, 你无法获得任何分数。

若你对解的存在性判断正确,你可以获得 40% 的分数;若解不存在或你给出了一组正确的构造,则你可以获得剩下 60% 的分数。

【测试样例】

样例输入	样例输出	
0 7	Yes	
	0 1 3 2 6 7 5 4	
0 7	yEs	
	0 abacaba	

样例输入	样例输出
0 7	yes
3 5	No

【样例 1,2,3 解释】

样例输出 1 和 2 对应同一个数列,即 $\{0,1,3,2,6,7,5,4\}$,它们均能获得该测试点 100% 的分数。样例输出 3 能获得该测试点 40% 的分数。

【数据范围】

对于所有数据,保证 $0 \le l < r \le 10^7$ 。

设 n = r - l + 1。

子任务编号	$n \le$	特殊限制	分数
1	10		9
2	20		9
3	10^{5}	A, B	10
4	10^{5}	Α	10
5	2000	С	25
6	$5 imes10^5$	D	20
7	$3 imes10^6$		10
8			7

- A: 保证 l = 0。
- B: 保证 n 是 2 的整数次幂。
- C: 保证 l 是偶数, r 是奇数。
- D: 本子任务有 5 个测试点, 从所有 $n \ge 2 \times 10^5$ 且有解的数据中随机生成。

寻宝 (treasure)

【题目描述】

有一天 wrzSama 在寻宝,突然他掉到了一个神奇的房间里。这个房间里有 n 个机器,第 i 个机器 可以生产 2^i 个钻石。

具体地,wrzSama 可以用 a_i 的时间开动第 i 个机器,让它生产 2^i 个钻石。这些机器有个很特殊的性质,每当他用一次第 i 个机器后,会让它的开动时间 a_i 加上 b_i 。这意味着当他要第二次得到这 2^i 个钻石时就需要 $a_i + b_i$ 的时间,每次不断累加,第 x 次开动就需要 $a_i + (x-1)b_i$ 的时间。

wrzSama 需要得到至少 2^n 个钻石来得到宝藏,请问他最少需要多长时间。

【输入格式】

第一行一个正整数 n。

第二行 n 个正整数,表示 a_1, a_2, \ldots, a_n 。

第三行 n 个正整数,表示 b_1,b_2,\ldots,b_n 。

【输出格式】

一行一个正整数,即为答案。

【测试样例】

样例输入	样例输出
3	3
1 2 3	
3 2 1	
3	5
1 2 100	
1 2 1	
4	15
1 2 100 100	
1 2 1 1	

【样例解释】

样例 1 解释:直接获得 23, 花费 3 的时间。

样例 2 解释: 获得 2 个 2^1 ,花费 3 的时间,然后再花 2 的时间获得一个 2^2 ,这样 wrzSama 就可以得到 $2 \times 2^1 + 2^2 = 8 = 2^n$ 了。

样例 3 解释: 获得 2 个 2^1 和 3 个 2^2 。

【数据范围】

本题采用捆绑测试。

子任务	分值	特殊限制
1	16	$1 \le n \le 10$
2	16	$1 \le n \le 20$
3	24	$1 \le a_i \le 3 \times 10^3$
4	44	无

对于 100% 的数据,保证 $1 \le n \le 10^3$, $1 \le a_i, b_i \le 10^7$ 。

狂気沈殿 (crazy)

【题目背景】

【题目描述】

给定一棵 n 个节点的树, 树有边权, 与一个长为 n 的序列 a。

定义节点 x 的父亲为 fa(x), 根 rt 满足 fa(rt) = rt。

定义节点 x 的深度 dep(x) 为其到根简单路径上所有边权和。

有m次操作:

11r: 对于 $l \leq i \leq r$, $a_i := fa(a_i)$ 。

21r: 查询对于 $l \le i \le r$, 最小的 $dep(a_i)$ 。

【输入格式】

第一行三个空格隔开的数 n, m, rt, 其中 rt 表示根节点的编号。

之后 n-1 行,每行三个空格隔开的数 u,v,w 表示一条 u 与 v 之间,边权为 w 的边。

之后一行 n 个空格隔开的数表示这个序列。

之后 m 行,每行三个用空格隔开的数,表示一次操作。

【输出格式】

对每个2操作,输出一行一个数表示其对应的答案。

【测试样例】

样例输入	样例输出
5 6 2	2
3 2 2	2
5 3 3	0
1 2 4	0
4 2 3	
3 3 3 1 2	
2 1 1	
2 2 3	
2 4 5	
1 2 3	
1 4 4	
2 1 2	

对于 100% 的数据, $1 \le n, m \le 2 \cdot 10^5$, $1 \le a_i \le n$, 边权在 $[0, 10^9]$ 之间。