NOIP 题目选讲

题目名称	输入文件	输出文件	时间限制	空间限制
加边	addedge.in	addedge.out	1.0秒	512 MiB
不短路	roads.in	roads.out	1.0秒	512 MiB
推理王国	reason.in	reason.out	1.0秒	512 MiB
人工智能	ai.in	ai.out	3.0秒	512 MiB

编译选项

1 -std=c++14 -02 -static

搬题人:被 NFLS 删号的小 D

加边 (addedge)

【题目描述】

小D有一棵树。

他觉得树不够优美,于是他在树上不停地加边,得到了一棵仙人掌(每条边至多在一个环上的图)。

但他认为仙人掌也不够优美,于是他又在仙人掌上加了一条边,这次他很满意,但他找不出原来的树是哪棵了。

请你帮帮小 D,求出有原始的树有多少种可能的情况,由于答案很大,小 D 只需要你告诉他答案对 10^9+7 取模后的结果。

【输入格式】

从 addedge.in 中读入数据。

第一行两个整数 n, m,表示图的点数和边数。

接下来 m 行,每行两个整数 u,v,表示最终的图中一条连接 u,v 的边。

【输出格式】

输出到 addedge.out 中。

一行一个整数,表示初始树的数量对 $10^9 + 7$ 取模后的结果。

【样例1输入】

2 1 2 3 1 3 4 2 3 5 2 4	1	4 5
4 2 3	2	1 2
	3	1 3
5 2 4	4	2 3
	5	2 4
6 3 4	6	3 4

【样例1输出】

```
1 | 8
```

【数据范围】

对于所有测试数据: $1 \le n \le m \le 5 \times 10^5$, 保证图符合题目描述。

不短路 (roads)

【题目描述】

小D要去上学。

小 D 所在的城市有n个街区,有m条双向道路将这些街区连接,每条道路有一定的长度。

保证任意两个街区都都能通过若干条道路互相到达。

小 D 的家位于街区 1, 学校位于街区 n。

一般情况下,小 D 会沿着长度最短的路径从家去学校,但今天小 D 走一条"不短路",即一条长度与最短路长度不一样的道路。

请你告诉小 D 他能不能找到这样一条"不短路"。

【输入格式】

从 roads.in 中读入数据。

第一行两个整数 n, m,分别表示街区数和道路数。

接下来 m 行,每行三个整数 u_i, v_i, w_i ,表示第 i 条道路连接街区 u_i, v_i ,长度为 w_i 。

【输出格式】

输出到 roads.out 中。

输出一行一个字符串 YES 或 NO,表示小 D 是否能找到一条"不短路"。

【样例1输入】

```
      1
      4
      4

      2
      1
      2
      1

      3
      1
      3
      3

      4
      2
      4
      4

      5
      3
      4
      3
```

【样例1输出】

```
1 YES
```

【样例 2输入】

```
    1
    3
    4

    2
    1
    2
    1

    3
    1
    2
    2

    4
    1
    3
    3

    5
    1
    3
    3
```

【样例2输出】

```
1 | NO
```

【数据范围】

对于所有测试数据: $2 \le n \le 10^5, 1 \le m \le 2 \times 10^5$, 保证任意两个城市通过道路连通。

推理王国 (reason)

【推理王国】

在小 D 的家乡, 一直有这样一个传说:

在遥远的大海彼岸,有一个推理王国,这里有100个人,每个人都聪明绝顶且善于推理。

这个国家里的每个人都是红眼睛或者蓝眼睛,所有人都厌恨红眼睛,所以如果一个人知道了自己是红眼睛,他就会在当天晚上立刻开枪自杀。

每个人都能看到除自己外所有人的眼睛颜色。

每天中午所有人都会在广场集会,此时所有人都知道有哪些人在夜晚自杀了。

事实上,这个国家里的每个人都是红眼睛,但他们谁都不愿意告诉其他人。

直到某天中午,一个旅行者来到了这个王国,他告诉每个人:"这里有至少一个红眼睛的人"。

在他说出这句话后的很多天都无事发生,直到第100天的夜晚,所有人都开枪自杀了。

假如你不知道这个故事是为什么,你可以去看一下这个视频。

小 D 对这个故事很感兴趣,于是他在某天中午来到了传说中的推理王国。

他发现,故事说的基本是真的,只有两点不一样:

- 1. 这个岛上还有 n 个人在生活。
- 2. 岛上每个人有若干个朋友,他只会相信他朋友的眼睛颜色,并且认为其他人的眼睛颜色并不可信。

小 D 像故事里一样在这天中午所有人说:"这里有至少一个红眼睛的人",然后离开了这个王国。

小 D 想知道,假如他说的话会引起某些人自杀,那么第一个响起枪声的晚上是第几天,以及这一晚共有多少人自杀。

但他忘了每个人的眼睛颜色,因此他想知道在这 2^n 种眼睛颜色的可能中,这两个问题答案的和。

特别地,假如某种情况下不会有人自杀,则这种情况不统计入答案中。

分别输出两个问题的答案对 109 + 7 取模的结果。

【输入格式】

从 reason.in 中读入数据。

第一行一个整数 n, 表示推理王国的人数。

接下来 n 行每行一个长度为 n 的 01 串,表示哪些人是第 i 个人的朋友。

第j个人是第i个人的朋友当旦仅当第i个 01 串的第j位为 1。

保证第 i 个 01 串的第 i 位是 0。

【输出格式】

输出到 reason.out 中。

一行两个整数,分别表示两个问题的答案对 $10^9 + 7$ 取模后的结果。

【样例1输入】

```
1 | 2
2 | 01
3 | 10
```

【样例1输出】

```
1 | 4 4
```

【样例1解释】

假如只有一个人是红眼睛,那么这个人在第1天(即当天)晚上就会自杀。

假如两个人都是红眼睛,那么这两个人会在第2天晚上同时自杀。

【数据范围】

对于所有测试数据: $1 \le n \le 3000$ 。

人工智能 (ai)

【题目描述】

小 D 创造出了一个聪明绝顶的 AI。

这天,小 D 想和这个 AI 玩一个游戏,因此他准备了 n 种石子,第 i 种石子有 a_i 个,小 D 每得到 p_i 个这种石子就能获得 w_i 的分数。

小 D 和 AI 会轮流取石子,每人取走恰好一颗,直到没有石子,小 D 想最大化自己的分数,而 AI 要最小化小 D 的分数。

但小 D 觉得这个问题太简单了,于是他想把石子平分成两堆(保证石子总数是偶数),在两堆石子中分别独立地做这个游戏。

在第一个游戏中, 小 D 先手, 而第二个游戏中 AI 先手, 最终小 D 的分数是两个游戏里的分数和。

假设双方目标不变且都足够聪明, 小 D 想知道自己最终的分数是多少。

【输入格式】

从 ai.in 中读入数据。

第一行一个整数 n , 表示石子的种类数。

接下来 n 行,每行三个整数 a_i, p_i, w_i ,含义如题所述。

【输出格式】

一行一个整数表示最终小 D 的分数。

【样例1输入】

```
    1
    4

    2
    11 3 10

    3
    8 4 8

    4
    7 3 2

    5
    10 4 5
```

【样例1输出】

```
1 | 35
```

【数据范围】

对于所有测试数据保证: $1 \le n \le 2000, \sum a_i \le 10^6, \sum p_i \le 2000, w_i \le 10^9, p_i, a_i, w_i \ge 1$ 且 $\sum a_i$ 为偶数。