2023 uoib 模拟赛day2

by 广州市铁一中学

题目名称	集合	差后队列	蛋糕	字符替换
题目类型	传统型	传统型	传统型	传统型
输入文件	set.in	queue.in	cake.in	replace.in
输出文件	set.out	queue.out	cake.out	replace.out
时间限制	1s	1s	1s	3s
内存限制	256M	256M	256M	256M

提交程序名

对于C++语言 set.cpp	queue.cpp	cake.cpp	replace.cpp
-----------------	-----------	----------	-------------

编译选项

对于C++语言	-lm -O2 -std=C++14
---------	--------------------

注意事项

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 3. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。
- 4. 若无特殊说明, 结果比较方式为忽略行末空格、文末回车后的全文比较。
- 5. 原则上,每个测试点时限应为标准程序在该测试点上的运行时间的 2 倍及以上。
- 6. 每道题的时间限制、编译命令、是否开启文件输入输出等信息,在赛时均有可能变动,请各位选手以赛时通知为准。

T1 集合 (set)

题目描述

定义一个整数集合 S 是好的,当且仅当 S 中的所有值域连续段长度都不超过 k。

换句话说,S 是好的,当且仅当不存在一对整数 l,r,满足 [l,r] 中的整数都在 S 中出现且 r-l+1>k。

给定一个长度为 n 的整数序列 a_1, a_2, \ldots, a_n ,问该序列有多少个子区间满足这个区间的数的集合是好的。

输入格式

第一行两个整数 n, k,意义如题目描述。

第二行 n 个整数,表示 a_1, a_2, \ldots, a_n 。

输出格式

一行一个整数,表示满足条件的子区间个数。

样例1

样例输入

```
1 6 1
2 2 4 1 3 6 5
```

样例输出

1 11

样例解释

所有长度为1的子区间都满足条件。

除此之外,还有子区间 [1,2], [2,3], [3,4], [3,5], [4,5] 满足条件。剩下的子区间都不满足条件。

子区间 [3,5] 满足条件,因为这个区间组成的数的集合 1,3,6,没有长度大于 1 的值域连续段。

而子区间 [4,6] 就不满足条件,因为该区间的数集 3,5,6 中,[5,6] 就是长度为 2 的值域连续段,大于 k,不满足条件。

数据范围

本题开启捆绑测试。

对于 100% 的数据,保证: $1 \le n \le 2 \times 10^5$, $1 \le a_i, k \le n$ 。

Subtask	分值	$n \leq$	k
1	20	200	$\leq n$
2	20	2000	$\leq n$
3	20	$2 imes 10^5$	= 1
4	40	$2 imes 10^5$	$\leq n$

T2 差后队列(queue)

题目描述

定义差后队列为一个数据结构, 支持两种操作:

- pop 随机删除一个**不是**最大值的的数。如果只有一个数则删除该数。
- push 插入一个数 (正常插入)。

给定操作序列,求每次删的数的期望,以及每个数期望被删的时间(如果到最后也没被删则删除时间为0)。

输入格式

第一行一个整数 n 表示操作数。

接下来 n 行,每行一个操作。 $0 \times$ 表示 push, $1 \times$ 表示 pop。

输出格式

一行输出 n 个整数,如果是 0 操作就输出该数被删除时间(指在哪一步操作被删除)的期望,否则输出该操作删除的数的期望大小。答案对 998244353 取模。

样例1

样例输入

样例输出

1 | 499122183 3 49528961 8 499122183 154029014 154029014 450735376 10 727178284

数据范围

Subtask1(50pts): $n, m \le 5000$.

Subtask2(50pts):无特殊限制。

对于 100% 的数据满足 $n \le 10^6$, 0 < x < 998244353, x 互不相同。

T3 蛋糕 (cake)

题目描述

你现在得到了一个二维蛋糕,它从左到右可以分成 n 列,每列高为 a_i 。对于每一列,又可以从下到上分为 a_i 块,并且最上面一块权值为 1,从上到下权值依次加 1。每一列的最上面的权值为 1 的块的上表面有"奶油"。

1				
2		1		
3	1	2		
4	2	3		1
5	3	4	1	2

你现在要把这一个蛋糕分成若干个矩形,要求每一个矩形上都要有"奶油",也即每个矩形要包含至少一个权值为 1 的块。显然蛋糕中的每一格都必须被划分到恰好一个矩形内,且矩形不能包含没有蛋糕的格子。

定义每一块矩形的代价为其每一行的最大值之和,即 $\sum\limits_{i=l}^r(\max_{j=d}v_{i,j})$ 。特别地,对于宽(列数)为 1 的矩形,代价为矩形内权值的最大值。请你最小化划分整个蛋糕的代价。

输入格式

第一行一个整数 n 表示序列长度。

第二行 n 个整数 a_i 表示序列。

输出格式

一行一个整数表示答案。

样例1

样例输入

1 5 2 5 1 4 3 2

样例输出

1 15

样例解释

全部竖着删即可,代价 5+1+4+3+2

样例2

样例输入

```
1 | 5
2 | 4 5 4 5 4
```

样例输出

```
1 16
```

样例解释

全部横着删即可, 代价 5+4+3+2+1+1

样例3

样例输入

样例输出

```
1 12
```

样例4

样例输入

```
1 | 10
2 | 12 12 21 15 14 12 5 17 3 9
```

样例输出

```
1 120
```

样例5

样例输入

```
1 | 8
2 | 2 2 7 2 2 7 2 2
```

样例输出

1 23

注意这里不保证样例强度

数据范围

 ${\tt Subtask1(10pts)}: n,m \leq 10.$

 ${\tt Subtask2(10pts)}: n,m \leq 50.$

 ${\tt Subtask3(20pts)}: n,m \leq 300.$

Subtask4(10pts): a_i 在 (0,5000] 内随机。

Subtask5(10pts): a_i 互不相同。

Subtask6(40pts):无特殊限制。

对于 100% 的数据, $n \le 3000, 1 \le a_i \le 10^9$ 。

T4 字符替换 (replace)

题目描述

给定一个仅包含 0、1、2、a、b、c 和?的字符串,你需要将字符串中的每个?分别替换成 0 或 1 或 2 之一,将字符串中的每个 a 分别替换成 0 或 1 之一,将字符串中的每个 b 分别替换成 0 或 2 之一,将字符串中的每个 c 分别替换成 1 或 2 之一。也就是说替换成一个012字符串。特别地,如果字符串中不包含?,应将其自身视为唯一的替换方案。

求有多少种替换方案,使得替换后的字符串满足:恰好拥有奇数个"好的"非空子串。"好的"的定义为其**本 质不同的**子序列(包含空集)个数为奇数。

每个数据点会给定一个字符串 s ,然后每次对 s 的一个子串进行询问,答案对 998244353 取模。

输入格式

第一行一个整数 n。

第二行一个长为n的字符串s,仅包含0、1、2、a、b、c 和?。

第三行一个整数 m 表示询问次数。

接下来 m 行,每行两个整数 l,r 表示对子串 $s_{l,r}$ 进行一次询问。

输出格式

m 行,每行一个正整数表示答案,对 998244353 取模。

样例1

样例输入

```
1 | 5
2 | 100a1
3 | 5
4 | 1 | 5
5 | 1 | 4
6 | 2 | 5
7 | 3 | 4
8 | 1 | 3
```

样例输出

```
      1
      1

      2
      0

      3
      1

      4
      1

      5
      1
```

样例解释

对于【样例#1】的第一个询问 1 5 , 有 2 种替换方案 , 分别为字符串 10001 和 10011。

其中 10001 有 3 个子串为好的,满足不同的子序列的个数为奇数: 10001 ,拥有 15 个不同的子序列; $s_{2,3}^\prime$ 和 $s_{3,4}^\prime$ 均为 00 ,都拥有 3 个不同的子序列。

而 10011 则拥有 4 个子串为好的,满足不同的子序列的个数为奇数,分别为 1001、 00、 0011、 11。

10001 有奇数个好的子串, 因此计入答案; 而 10011 有偶数个好的子串, 因此不计入答案。

样例2

样例输入

```
1 20
2 1110aa01001010a1a110
3 20
4 1 20
5 5 16
6 11 16
7 10 13
8 5 14
9 13 17
10 1 18
11 1 7
12 6 9
13 | 15 19
14 | 12 17
15 | 17 18
16 4 11
17 | 3 13
18 | 13 15
19 18 19
20 2 8
21 7 13
22 4 15
23 9 18
```

样例输出

```
1 3
2 2
3 2
4 0
5 4
6 2
7 13
8 3
9 0
10 1
   3
11
   1
12
13
   2
```

```
      14
      2

      15
      2

      16
      1

      17
      2

      18
      1

      19
      1

      20
      3
```

样例解释

对于【样例#2】的第一个询问 1 20 , $s_{1,20}$ 有 4 个 ${\bf a}$,因此有 $2^4=16$ 种替换方案。

样例3

样例输入

```
1 | 10
2    a11bcabab2
3    10
4    7    8
5    2    8
6    5    8
7    3    9
8    4    8
9    6    6
10    1   10
11    3    7
12    2    4
13    1    4
```

样例输出

```
      1
      1

      2
      26

      3
      9

      4
      48

      5
      7

      6
      0

      7
      54

      8
      5

      9
      2

      10
      1
```

数据范围

测试点编号	$n,m \leq$	字符集不包含
1	10	
2	50	?abc
3	500	?abc
4	5000	?abc
5	50000	?abc
6	50	3?bc
7	500	3?bc
8	5000	3?bc
9~11	50000	3?bc
12	50	
13~14	500	
15~16	5000	
17~18	50000	
19~20		

对于 100% 的数据,满足 $1 \leq n \leq 5 imes 10^4, 1 \leq m \leq 10^6$ 。