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Statement

Alice and Bob are visiting cities on a very long road that stretches from points −10^9 to 10^9. Alice 
starts at point A while Bob starts at point B.

There are n cities to visit, where the i-th city is at point t_i. Each city must be visited by Alice or Bob at 
least once, but they can be visited in any order.

What is the minimum total distance Alice and Bob travel?

Constraints:

● 1 ≤ n ≤ 200’000
● -10^9 ≤ A, B, t_i ≤ 10^9

Observations:

● The order of cities t_i don’t matter, so sort t in increasing order.
● The order of A and B don’t matter too, so assume A ≤ B (swap A and B if not).



We must visit both the leftmost city a_1 and the rightmost city a_k. And if we do visit both of them, we 
must have passed by all cities!

Subtask 1 (16 points): n ≤ 20, -10^6 ≤ A, B, t_i ≤ 10^6

Fix the set of cities visited by Alice a_1 ≤ a_2 ≤ … ≤ a_k (and let Bob visit the other cities b_1, b_2, …, 
b_m). What is the minimum distance Alice needs to travel to visit all cities a_i?

● We can do the same thing for Bob.

Therefore, we only need to consider two cases:

- Visit a_1 then a_k
- Distance = |A - a_1| + a_k - a_1

- Visit a_k then a_1
- Distance = |A - a_k| + a_k - a_1

- Take the minimum: Alice needs to travel

min(|A - a_1|, |A - a_k|) + a_k - a_1

● |x| is the absolute value of x, 
e.g. |-3| = 3, |4| = 4, |0| = 0



● A on the left of a_1

Visit a_1 then a_k:

Subtask 1 (16 points): n ≤ 20, -10^6 ≤ A, B, t_i ≤ 10^6

● A between a_1 and a_k

● A on the right of a_k

In all cases, the distance is |A - a_1| + a_1 - a_k.



● A on the left of a_1

Visit a_k then a_1:

Subtask 1 (16 points): n ≤ 20, -10^6 ≤ A, B, t_i ≤ 10^6

● A between a_1 and a_k

● A on the right of a_k

In all cases, the distance is |A - a_k| + a_1 - a_k.



Subtask 1 (16 points): n ≤ 20, -10^6 ≤ A, B, t_i ≤ 10^6

“Fix the set of cities visited by Alice a_1 ≤ a_2 ≤ … ≤ a_k.”

Which a_i’s to choose?

Try all subsets of all cities t_i: There are 2^20 = 1048576 possible choices of a_i’s (b_i’s are fixed after 
this). The answer is the minimum value of

min(|A - a_1|, |A - a_k|) + a_k - a_1 + 

min(|B - b_1|, |B - b_k|) + b_m - b_1

over all choices of a_i’s. Note that Alice or Bob may visit nothing!

One can implement this with recursion or bitmasks.

Time complexity: O(n*2^n).



Subtask 2, 3 (36, 21 points): n ≤ 5000

These subtasks are here just in case you do something inefficient or cause integer overflow for some 
reason.

- E.g. Using bubble sort for sorting, this happened before
- C++ has the built-in std::sort function in the header <algorithm>.

- Coincidentally, the constraints made the maximum answer 2 * 10^9, which fits in an int.



Subtask 4 (16 points): n ≤ 200’000

What would the optimal choice of a_i and b_i look like?

Claim: In one of the optimal choices, Alice visits t_1, …, t_k and Bob visits t_{k+1}, …, t_n for some k.

● I.e. Alice visits some left half and Bob visits some right half.
● Remember we assumed that A ≤ B.

Alice Bob



Subtask 4 (16 points): n ≤ 200’000

Alice

Bob

Proof:

● Note that if Alice and Bob visit all cities they passed by, they will each visit a continuous range of 
cities no matter what they do.

● If the two ranges overlap, we can always remove the overlap while visiting all cities and get a 
lower total distance.

● Since A ≤ B, Alice must visit some left half, Bob must visit some right half.

Alice: Could’ve let Bob do their job

Bob

Let only Alice or Bob do this part

(same if Bob is 
contained in Alice)



Subtask 4 (16 points): n ≤ 200’000

Solution: Try every i (0 ≤ i ≤ n), and let Alice visit the leftmost i cities t_1, t_2, …, t_i, and Bob visit the 
remaining cities t_{i+1}, …, t_n.

The minimum distance for a fixed i (1 ≤ i ≤ n - 1) is

min(|A - t_1|, |A - t_i|) + t_i - t_1 + 

min(|B - t_i|, |B - t_n|) + t_n - t_i

Special cases:

Alice visits all cities (i=n):

min(|A - t_1|, |A - t_n|) + t_n - t_1

Bob visits all cities (i=0):

min(|B - t_1|, |B - t_n|) + t_n - t_1

Take the minimum among all cases. Time complexity: O(n log n) due to sorting.
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Abridged Statement

Dragon 1 wants to send a love letter to dragon t. Dragon i’s age is a_i, and there are K pairs of close 
friends (u, v).

All dragons can send a letter (after getting it) to all other dragons. The time taken for dragon u to send 
a letter to dragon v is:

● 0 if u and v are close friends.
● |a_u - a_v| otherwise.

For every dragon t, find the minimum time needed for dragon 1 to send a letter to dragon t.

Constraints:

● 1 ≤ n, K ≤ 200’000
● 1 ≤ a_i ≤ 10^9



Equivalent Statement

Given a complete weighted undirected graph with n vertices (there is an edge between every pair of 
vertices), n integers a_1, …, a_n, and K pairs of close friends (u, v).

The weight of edge (u, v) is:

● 0 if u and v are close friends.
● |a_u - a_v| otherwise.

Find the minimum distance from vertex 1 to every vertex i.

Constraints:

● 1 ≤ n, K ≤ 200’000
● 1 ≤ a_i ≤ 10^9



Subtask 1 & 2 (18, 14 points): n, k <= 2000 (and a_i = i for Subtask 1)

Naively adding all the edges:

● For every pair of vertices i, j, add an edge of weight |a_i - a_j| or 0 between node i and node j 
(depending on whether they are close friends).

● There are O(N) nodes and O(N^2) edges.
● Run a normal Dijkstra’s algorithm.
● Time complexity: O(N^2 log N)



Subtask 4, 5, 6: reducing the number of edges

Subtask 4 : K = 0, the min path between i and j is just |ai-aj|

Why?

Instead of adding all O(n^2) edges, sort the nodes by ai. Let v1,v2,...,vn be the sorted 
order. Adding the edges (vi,vi+1) with weight |a_vi - a_vi+1| is enough

Subtask 5 : ai <= ai+1 

Add the edges (i,i+1) with weight ai+1-ai and also the k edges of weight 0 

Subtask 6 : no constraint

Sort the nodes into v1,v2…vn.add edges between (vi,vi+1) with weight |a_vi - a_vi+1| 
and the k edges of weight 0 from the input. Run a naive dijkstra from node 1 and we 
are done
Final complexity : O((n+k)logn)
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Abridged Problem Statement

Find the minimum distance two people on a number line, starting at A and B, 
need to travel in total to visit n targets at positions t[i] in order. Either person 
can visit each target.



Subtask 1

Subtask 1 (5 points): |t[i]|, |A| ≤ 1000,  B=10^9

Bob would have to travel a minimum distance of 10^9 - 1000 to get to a single 
event.

If Alice attended all the events, she would drive a max. distance of 2000*10^5 = 
2*10^8 ≤ 10^9 - 1000. (from -1000 to 1000)

So Alice must visit all events, under these constraints.

Time complexity: O(n)



Subtask 2

Subtask 2 (8 points) n ≤ 20

Brute force over all combinations of Alice and Bob for each event

Either Alice or Bob can visit each event, so there are 2^n combinations.

Time complexity: O(2^n) or O(n*2^n)



Subtask 3

Subtask 3 (19 points) n ≤ 3000

When events up to event i have been visited, either Alice or Bob must be at 
position t[i]. The other one can be anywhere visited before, including Alice or 
Bob's starting positions.

Use dynamic programming



Subtask 3

dp[i][j] = minimum distance travelled if Alice and Bob are at t[i] and t[j], in any order, 
and events up to event i have been visited

Candidate values for next DP:

If the person at t[i] moves to t[i+1], other person is at t[j] -> contribute to dp[i+1][j]

dp[i][j]+abs(t[i+1]-t[i]) contributes to dp[i+1][j]

If the person at t[j] moves to t[i+1], other person is at t[i] -> contribute to dp[i+1][i]

dp[i][j]+abs(t[i+1]-t[j]) contributes to dp[i+1][i]



Subtask 3

DP transitions:

dp[i+1][i]=min(dp[i][j]+abs(t[i+1]-t[j]))

dp[i+1][j]=dp[i][j]+abs(t[i+1]-t[i])

The dp[i+1][j] transition for j=i is accounted for within dp[i+1][i]



Subtask 3

Base cases:

Set t[-1] to A and t[0] to B, before all other t[i]

dp[0][-1]=0

Time complexity: O(n^2)



Subtask 4

Subtask 4 (12 points) n ≤ 10^5, |t[i]|, |A|, |B| ≤ 100

Same DP, but DP only on each distinct t[i] or for each t[i] from -100 to 100

Time complexity: O(n max(|t[i]|))



Subtask 5

Subtask 5 (43 points) |t[i]|, |A|, |B| ≤ 2*10^5

Subtask 4 DP:

dp[i+1][t[i]]=min(dp[i][j]+abs(t[i+1]-j))

How to optimise this from O(n^2)?



Subtask 5

Segment tree

Keep two min segtrees: one for travelling to the left and one to the right

The segtree for the left will store min(dp[i][j] + j) for each j > x at index x

min(dp[i][j] + j) - x = min(dp[i][j] + abs(j - x)) as j - x > 0

The segtree for the right will store min(dp[i][j]-j) for each j ≤ x at index x

min(dp[i][j] - j) + x = min(dp[i][j] + abs(j - x)) as j - x < 0

Min of both segtrees = min(dp[i][j] + abs(j - x)) over all j



Subtask 5

Update dp[i+1][j] -> this adds a constant to all elements, so store the offset 
from this constant instead of the value in this segtree, and add the constant 
back in afterwards

Update dp[i+1][i] -> update left segtree in range [min t_i, i], update right segtree 
in range [i, max t_i]

Time complexity: O(n log(max(t[i])) + max(t[i]))



Subtask 6

Subtask 6 (13 points) No additional constraints

Instead of creating the segtree over the full range of -10^9 to 10^9, only create 
elements for A, B, and each t[i], sorting them and using coordinate compression.

Time complexity: O(n log n)
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Abridged Statement

Given arrays x and a of length n. For a permutation p of length n, define f(p) as follows:
● Initially, the number line is white.
● For all i (1 ≤ i ≤ n), color [x_i - a_i, x_i + a_i] black.
● f(p) = total length of black segments.

Find the sum of f(p) over all permutations p, modulo 10^9+7.

Since order doesn’t matter, sort x and a. Assume x and a are increasing from now on.



Subtask 1 (7 points): All a_i are equal

● Since the segments are the same for all permutations, the answer is
n! * (total length of black segments for any permutation)

● We need to solve the problem: Given n segments [Li, Ri], what is the total length of the 
union of these segments?

● Solution:
○ Sort all segments by L.
○ Process segment 1 to n (sorted). We will maintain the last connected segment 

group. Let it be [last_l, last_r]. Suppose we are processing [L, R].
○ If L > last_r, we have a new segment group. Add last_r - last_l to the answer, then 

set the last connected segment group to [L, R].
○ Otherwise, we extend the segment group. Set [last_l, last_r] to [last_l, R].
○ In the end, we need to add last_r - last_l again for the last group.

● Time complexity: O(n log n) due to sorting.



Subtask 2 (8 points): n ≤ 9, −2000 ≤ x_i, a_i ≤ 2000

● Try every permutation of length n, then do the same as Subtask 1.
○ In C++, one can use next_permutation. To deal with duplicates, permute the 

sequence of (a_i, i) instead to make all values “distinct”.
● Time complexity: O(n! * n log n).



● Let’s look at one point t and ask: How many permutations are there such that point t is 
colored black?

○ I.e. how many permutations are there such that at least one segment [x_i, x_i - a_{p_i}] 
or [x_i, x_i + a_{p_i}] covers point t?

● It’s hard to count this directly, let’s count the opposite: How many permutations are there 
such that no segment touches point t (segment’s endpoint touching t is ok)?

○ The answer to the original question is n! - answer to this
● Condition: For all i, a_{p_i} ≤ |x_i - t|

Subtask 3 (31 points): n ≤ 300, −10^5 ≤ x_i, a_i ≤ 10^5

x_i - a_3 x_i - a_2 x_i - a_1 x_i x_i + a_1 x_i + a_2 x_i + a_3

t

● Fix one x_i. Then a_1, a_2, …, a_k ≤ |x_i - t| for some k, then |x_i - t| < a_{k+1}, …
○ Example above has a_1, a_2 ≤ |x_i - t|, then |x_i - t| > a_3, …

● In fact, if t is between x_i ± a_j and x_i ± a_{j+1}, then k = j.
● So p is not covered by any segment iff for all i, p_i ≤ c_i, where

○ c_i is the unique integer j s.t. t is between x_i ± a_j and x_i ± a_{j+1}

● t is between x_i - a_3 and x_i - a_2, so c_i = 2Ok range



Subtask 3 (31 points): n ≤ 300, −10^5 ≤ x_i, a_i ≤ 10^5

● For a fixed point p, the problem reduces to:
○ Given an array c of length n (1 ≤ c_i ≤ n), how many permutations p satisfy p_i ≤ 

c_i for all i?
○ E.g. c = (2, 3, 2), the answer is 2: p = (1, 3, 2), (2, 3, 1).

● Note that again, the order of c_i doesn’t matter!
○ Let’s sort c in increasing order.

● Now c_1 ≤ c_2 ≤ … ≤ c_n. How many permutations satisfy p_i ≤ c_i?
○ p_1: There are c_1 choices.
○ p_2: 1 number is used for p_1, and since c_1 ≤ c_2, there are c_2 - 1 choices.
○ p_3: 2 numbers are used for p_1 and p_2. There are c_3 - 2 choices.
○ …
○ p_i: i - 1 numbers are used. There are c_i - (i - 1) choices.

● Thus, the answer is c_1 * (c_2 - 1) * (c_3 - 2) * … * (c_n - (n - 1)).
● Time complexity: O(n log n) time (log n due to sorting).
● Remember this is only for a fixed point p!



x_2 - a_3 x_2 - a_2 x_2 - a_1 x_2 x_2 + a_1 x_2 + a_2 x_2 + a_3

Subtask 3 (31 points): n ≤ 300, −10^5 ≤ x_i, a_i ≤ 10^5

● Finally, note that there are only O(n^2) segments with different values of {c_i}.
○ Each x_i creates ≤2n + 2 segments:

■ [x_i, x_i + a_1], [x_i + a_1, x_i + a_2], …, [x_i + a_n, INF]
■ [x_i - a_1, x_i], [x_i - a_2, x_i - a_1], …, [x_i - a_n, -INF]

○ There are ≤n different x_i’s.
■ Their intersections create at most n * (2n + 2) = O(n^2) segments

● Let’s compute the answer for each segment in O(n log n), multiply it by the segment 
length, then sum up the answers over all segments.

● Time complexity: O(n^2 * n log n) = O(n^3 log n).

x_1 - a_3 x_1 - a_2 x_1 - a_1 x_1 x_1 + a_1 x_1 + a_2 x_1 + a_3

x_3 - a_3 x_3 - a_2 x_3 - a_1 x_3 x_3 + a_1 x_3 + a_2 x_3 + a_3



Subtask 6 (x points): n ≤ 2000, −10^9 ≤ x_i, a_i ≤ 10^9

O(n^3 log n) will TLE; we need something like O(n^2 log n).

Recall that we took O(n log n) time to compute this for each of the O(n^2) segments:
● Given an increasing array c of length n (1 ≤ c_i ≤ n), the number of permutations p that 

satisfy p_i ≤ c_i for all i is
c_1 * (c_2 - 1) * (c_3 - 2) * … * (c_n - (n - 1)).

Can we calculate this for each segment faster?



Subtask 6 (x points): n ≤ 2000, −10^9 ≤ x_i, a_i ≤ 10^9

Suppose for a segment s_1, we know c = {c_1, c_2, …, c_n}, and the value of
f(c) = c_1 * (c_2 - 1) * (c_3 - 2) * … * (c_n - (n - 1)).

● In the example: n=2, c = {2, 2}, f(c) = 2 * (2 - 1) = 2.

Now, we move from s_1 to the next segment, s_2. We want to find f(c) fast. What changes?
● c_1: 2 -> 1
● c_2: No change
● f(c) = 1 * (2 - 1) = 1.

Generally, only one term in f(c) increases or decreases by 1!
But which term changes by what?

x_2 - a_2 x_2 - a_1 x_2 x_2 + a_1 x_2 + a_2

x_1 - a_2 x_1 - a_1 x_1 x_1 + a_1 x_1 + a_2

s_1 s_2



Subtask 6 (x points): n ≤ 2000, −10^9 ≤ x_i, a_i ≤ 10^9

Suppose we know the current f(c) = c_1 * (c_2 - 1) * (c_3 - 2) * … * (c_n - (n - 1))
If we go from the left of x_i - a_j to the right:

● The value j was in c, say c_k = j
● c_k becomes c_k - 1

New example (not the picture):
c = {3, 3, 4, 4, 5}

Suppose we go from the left of x_i - a_4 to the right: one 4 becomes 3
c = {3, 3, 3, 4, 5}

We need to maintain f(c) fast when c changes. How does c change?

x_2 - a_2 x_2 - a_1 x_2 x_2 + a_1 x_2 + a_2

x_1 - a_2 x_1 - a_1 x_1 x_1 + a_1 x_1 + a_2

s_1 s_2



Subtask 6 (x points): n ≤ 2000, −10^9 ≤ x_i, a_i ≤ 10^9

c = {3, 3, 4, 4, 5}
f(c) = 3 * (3-1) * (4-2) * (4-3) * (5-4) = 12

Suppose we go from the left of x_i - a_4 to the right. One 4 becomes 3:
c = {3, 3, 3, 4, 5}

f(c) = 3 * (3-1) * (3-2) * (4-3) * (5-4) = 12 / (4-2) * (3-2) = 6

Let’s maintain the sequence c and f(c).

Generally, suppose we go from the left of x_i - a_j to the right.
● Find the smallest position k where c_k = j.

○ In the example, k=2 (0-indexed), as c_2 = 4.
● f(c) becomes f(c) / (c_k - k) * [(c_k - 1) - k].

○ In the example: 12 / (4-2) * (3-2)
● Update c_k to c_k - 1.

The case for x_i + a_j is similar.
Almost done! How do we find k fast? Binary search! c is sorted.



Subtask 6 (x points): n ≤ 2000, −10^9 ≤ x_i, a_i ≤ 10^9

But can we do division modulo M = 10^9 +7 (prime)?
● 1/a = a^{M-2} (by Fermat’s little theorem).
● You can compute this in O(log M) with binary exponentiation.

Each update takes O(log n) time due to binary search. We have O(n^2) segments.
Time complexity: O(n^2 log n).


