

题目名称	升降梯上	塔顶试探	礼物运送
程序文件名	updown	probe	transport
输入文件名	updown.in	probe.in	transport.in
输出文件名	updown.out	probe.out	transport.out
每个测试点时限	1秒	1秒	1秒
内存限制	128 MB	128 MB	128 MB
测试点数目	10	25	10
每个测试点分值	10	4	10
是否有部分分	无	无	无

提交源程序需加后缀

对于 Pascal 语言	updown.pas	probe.pas	transport.pas
对于 C 语言	updown.c	probe.c	transport.c
对于 C++ 语言	updown.cpp	probe.cpp	transport.cpp

评测环境:

Intel(R) Core(TM) i3-370M CPU @2.40GHz 2.39GHz, 2.00GB RAM

Cena 0.8.2 @ Windows 8 Enterprise x64

C++选手可以使用 %11d 或%I64d 输入输出 64 位整数。

最终评测时,所有编译命令均不打开任何优化开关。

升降梯上

(updown.pas/c/cpp)

题目描述

开启了升降梯的动力之后,探险队员们进入了升降梯运行的那条竖直的隧道,映入眼帘的是一条直通塔顶的轨道、一辆停在轨道底部的电梯、和电梯内一杆控制电梯升降的巨大手柄。

Nescafe 之塔一共有 N 层,升降梯在每层都有一个停靠点。手柄有 M 个控制槽,第 i 个控制槽旁边标着一个数 Ci,满足 C1<C2<C3<······<CM。如果 Ci>0,表示手柄扳动到该槽时,电梯将上升 Ci 层;如果 Ci<0,表示手柄扳动到该槽时,电梯将下降-Ci 层;并且一定存在一个 Ci=0,手柄最初就位于此槽中。注意升降梯只能在 1~N 层间移动,因此扳动到使升降梯移动到 1 层以下、N 层以上的控制槽是不允许的。

电梯每移动一层,需要花费 2 秒钟时间,而手柄从一个控制槽扳到相邻的槽,需要花费 1 秒钟时间。探险队员现在在 1 层,并且想尽快到达 N 层,他们想知道从 1 层到 N 层至少需要多长时间?

输入格式

第一行两个正整数 N、M。

第二行 M 个整数 C1、C2······CM。

输出格式

输出一个整数表示答案,即至少需要多长时间。若不可能到达输出-1。

样例输入

6 3

-1 0 2

样例输出

19

样例说明

手柄从第二个槽扳到第三个槽(0扳到2),用时1秒,电梯上升到3层,用时4秒。 手柄在第三个槽不动,电梯再上升到5层,用时4秒。

手柄扳动到第一个槽(2扳到-1),用时2秒,电梯下降到4层,用时2秒。

手柄扳动到第三个槽(-1扳倒2),用时2秒,电梯上升到6层,用时4秒。

总用时为(1+4)+4+(2+2)+(2+4)=19秒。

数据范围与约定

对于 30% 的数据,满足 1≤N≤10, 2<=M<=5。

对于 100% 的数据,满足 1≤N≤1000, 2<=M<=20, -N<C1<C2<······<CM<N。

塔顶试探 (probe.pas/c/cpp)

题目描述

探险队员们顺利乘坐升降梯来到了塔顶。塔顶有若干房间,房间之间连有通道。如果把房间看做节点,通道看做边的话,整个塔顶呈现一个有根树结构,并且每个房间的墙壁都涂有若干种颜色的一种。

现在探险队员们在树根处,他们打算进一步了解塔顶的结构,为此,他们使用了一种特殊设计的机器人。这种机器人会从队员身边,也就是树根出发,之后对塔顶进行深度优先遍历。机器人每进入一个房间(无论是第一次进入还是返回),都会记录这个房间的颜色。最后,机器人会回到树根。

显然,机器人会访问每个房间至少一次,并且穿越每条通道恰好两次(两个方向各一次),然后,机器人会得到一个颜色序列。但是,探险队员发现这个颜色序列并不能唯一确定塔顶的结构。现在他们想请你帮助他们计算,对于一个给定的颜色序列,有多少种可能的结构会得到这个序列。由于结果可能会非常大,你只需要输出答案对 10^9 取模之后的值。

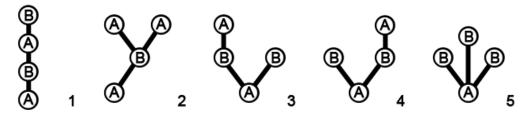
输入格式

输入文件包含一行,含有一个字符串,表示机器人得到的颜色序列。

输出格式

输出一个整数表示答案。

样例输入


ABABABA

样例输出

5

样例说明

有如下 5 种方案。注意子树之间是有序的,所以(3)和(4)是两种不同的方案。

数据范围与约定

对于 24% 的数据,字符串的长度不超过 20。

对于 100% 的数据,字符串的长度不超过 300。

礼物运送

(transport.pas/c/cpp)

题目描述

机器人刚刚探查归来,探险队员们突然发现自己的脚下出现了一朵朵白云,把他们托向了空中。一阵飘飘然的感觉过后,队员们发现自己被传送到了一座空中花园。

"远道而来的客人,我们是守护 Nescafe 之塔的精灵。如果你们想拜访护法和圣主的话,就要由我们引路。因此,你们是不是该给我们一点礼物呢 T T?"

队员们往远处一看,发现花园中有 N 个木箱, M 条柔软的羊毛小路,每条小路的两个端点都是木箱,并且通过它需要 ti 的时间。队员们需要往每个木箱中放一份礼物,不过由于精灵们不想让花园被过多地踩踏,因此运送礼物的任务最多只能由两位探险队员完成。

两位探险队员同时从1号木箱出发,可以在任意木箱处结束运送。运送完毕时,每只木箱应该被两位队员中至少一人访问过。运送任务所用的时间是两人中较慢的那个人结束运送任务的时间。请问这个时间最快是多少呢?

输入格式

第一行两个正整数 N、M。

接下来 M 行每行三个整数 xi、yi、ti,表示 xi 和 yi 之间有一条用时为 ti 的小路,小路是双向的。

输出格式

输出所需的最短时间。

样例输入

6 6

1 2 10

2 3 10

3 4 5

4 5 10

5 6 20

2 5 10

样例输出

40

数据范围与约定

对于 50%的数据, 1<=N<=9。

对于 100%的数据, 1<=N<=18, 1<=ti<=1000, 1<=xi,yi<=N, 两个木箱之间最多只有一条小路, 不会有自己到自己的小路, 保证所有木箱是连通的。