引理
$$\lim\limits_{x \to \infty}(1 + \frac{1}{x}) ^ x = e\\
\lim\limits_{x \to 0}\sin{x} = x\\
$$
开证
f(x)=sinx
$${f}'(x) = \lim\limits_{\Delta{x} \to 0}\frac{{f}(x + \Delta{x}) - {f}(x)}{\Delta{x}}\\
= \lim\limits_{\Delta{x} \to 0}\frac{\sin(x + \Delta{x}) - \sin x}{\Delta{x}}\\
= \lim\limits_{\Delta{x} \to 0}\frac{\sin x \cos \Delta{x}+\cos x \sin \Delta{x} - \sin x}{\Delta{x}}\\
= \lim\limits_{\Delta{x} \to 0}\frac{\cos x \sin \Delta{x}}{\Delta{x}}\\
= \cos x\\
$$