引理
$$\lim\limits_{x \to \infty}(1 + \frac{1}{x}) ^ x = e\\
\lim\limits_{x \to 0}\sin{x} = x\\
$$
开证
f(x)=xa(a∈R)
$${f}'(x) = \lim\limits_{\Delta{x} \to 0}\frac{{f}(x + \Delta{x}) - {f}(x)}{\Delta{x}}\\
= \lim\limits_{\Delta{x} \to 0}\frac{(x + \Delta{x})^a - x^a}{\Delta{x}}\\
= x^{a-1}\lim\limits_{\Delta{x} \to 0}\frac{(1 + \frac{\Delta{x}}{x})^a - 1}{\frac{\Delta{x}}{x}}\\
= x^{a-1}\lim\limits_{\Delta{x} \to 0}\frac{(1 + \frac{\Delta{x}}{x})^a - 1}{\log_a (1 + \frac{\Delta{x}}{x})}\cdot\frac{\log_a (1 + \frac{\Delta{x}}{x})}{\frac{\Delta{x}}{x}}\\
$$
令t=(1+xΔx)a−1
$$\therefore 1 + \frac{\Delta{x}}{x} = (t + 1)^{\frac{1}{a}}
$$
当Δx→0时t→0
$$\therefore 原式 = x^{a-1}\lim\limits_{t \to 0}\frac{t}{\log_a (t + 1)^{\frac{1}{a}}}\cdot\lim\limits_{\Delta{x} \to 0}\frac{x}{\Delta{x}}\log_a (1 + \frac{\Delta{x}}{x})\\
= x^{a-1}\lim\limits_{t \to 0}\frac{a}{\log_a (t + 1)^{\frac{1}{t}}}\cdot\lim\limits_{\Delta{x} \to 0}\log_a (1 + \frac{\Delta{x}}{x})^{\frac{x}{\Delta{x}}}\\
= x^{a-1} \cdot a\ln a \cdot \frac{1}{\ln a}\\
= ax^{a-1}\\
$$