#P8225. 「Wdoi-5」天才⑨与天才拆分
「Wdoi-5」天才⑨与天才拆分
题目背景
萌萌琪露诺在寺子屋的教室里面见到了哆来咪·苏伊特。心怀好意的哆来咪告诉了她期末考试的题目,只要解出这些题目就能免于被慧音老师头槌。兴奋的琪露诺告别了哆来咪,猛然发现自己已经身处在期末考试的考场之上!但是琪露诺实在是太笨了,醒来就把哆来咪告诉她的题目忘得一干二净,只记得试卷上有大量的⑨。
现在琪露诺已经在考试啦,你可以使用⑨的妖精链接回答她的问题,以平复她忘记了考试答案的悲痛。你能帮帮她吗?
温馨提示:考试作弊是不对的哦。
题目描述
琪露诺定义一个十进制正整数为「 阶天才数」,当且仅当该整数的位数为 的倍数,且每一个数位均为 。例如, 是 阶天才数,而 不是 阶天才数,但是它是 阶天才数,也是 阶天才数。
琪露诺给定你 个询问,每个询问有两个整数 和 ,希望你能帮帮她,告诉她能不能把 拆分成若干个 阶天才数的和。
输入格式
- 第一行是一个整数 ,代表询问的个数。
- 接下来 行,每行两个整数 和 ,代表一个询问。
输出格式
- 输出共 行。如果对应的询问答案是可以,输出一行一个字符串
aya
,否则输出一行一个字符串baka
。
2
1 999
2 999
aya
baka
提示
本题共有 个测试点,每个测试点 分。最终分数为所有测试点分数之和。
$$\def{\n}{\text{无特殊限制}} \def{\arraystretch}{1.5}\begin{array}{|c|c|c|c|}\hline \textbf{Task} & \bm t= & \bm {n_i \le} & \bm {k_i \le} \cr\hline 1 & 1 & 233 & 1 \cr\hline 2\sim 6 & 1 & 10^3 & 1 \cr\hline 7\sim 8 & 10 & 10^9 & 1 \cr\hline 9 & 10^3 & 10^9 & 1 \cr\hline 10 & 10^3 & 10^{18} & 1 \cr\hline 11\sim 20 & 10^3 & 10^{18} & 10 \cr\hline \end{array} $$对于全部数据,满足 ,,。