#P913A. Modular Exponentiation
Modular Exponentiation
Description
The following problem is well-known: given integers n and m, calculate
where 2n = 2·2·...·2 (n factors), and denotes the remainder of division of x by y.
You are asked to solve the "reverse" problem. Given integers n and m, calculate
The first line contains a single integer n (1 ≤ n ≤ 108).
The second line contains a single integer m (1 ≤ m ≤ 108).
Output a single integer — the value of .
Input
The first line contains a single integer n (1 ≤ n ≤ 108).
The second line contains a single integer m (1 ≤ m ≤ 108).
Output
Output a single integer — the value of .
4
42
1
58
98765432
23456789
10
0
23456789
Note
In the first example, the remainder of division of 42 by 24 = 16 is equal to 10.
In the second example, 58 is divisible by 21 = 2 without remainder, and the answer is 0.