#P911F. Tree Destruction

    ID: 5707 Type: RemoteJudge 2000ms 256MiB Tried: 0 Accepted: 0 Difficulty: 9 Uploaded By: Tags>constructive algorithmsdfs and similargraphsgreedytrees*2400

Tree Destruction

Description

You are given an unweighted tree with n vertices. Then n - 1 following operations are applied to the tree. A single operation consists of the following steps:

  1. choose two leaves;
  2. add the length of the simple path between them to the answer;
  3. remove one of the chosen leaves from the tree.

Initial answer (before applying operations) is 0. Obviously after n - 1 such operations the tree will consist of a single vertex.

Calculate the maximal possible answer you can achieve, and construct a sequence of operations that allows you to achieve this answer!

The first line contains one integer number n (2 ≤ n ≤ 2·105) — the number of vertices in the tree.

Next n - 1 lines describe the edges of the tree in form ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). It is guaranteed that given graph is a tree.

In the first line print one integer number — maximal possible answer.

In the next n - 1 lines print the operations in order of their applying in format ai, bi, ci, where ai, bi — pair of the leaves that are chosen in the current operation (1 ≤ ai, bi ≤ n), ci (1 ≤ ci ≤ n, ci = ai or ci = bi) — choosen leaf that is removed from the tree in the current operation.

See the examples for better understanding.

Input

The first line contains one integer number n (2 ≤ n ≤ 2·105) — the number of vertices in the tree.

Next n - 1 lines describe the edges of the tree in form ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). It is guaranteed that given graph is a tree.

Output

In the first line print one integer number — maximal possible answer.

In the next n - 1 lines print the operations in order of their applying in format ai, bi, ci, where ai, bi — pair of the leaves that are chosen in the current operation (1 ≤ ai, bi ≤ n), ci (1 ≤ ci ≤ n, ci = ai or ci = bi) — choosen leaf that is removed from the tree in the current operation.

See the examples for better understanding.

3
1 2
1 3

5
1 2
1 3
2 4
2 5

3
2 3 3
2 1 1

9
3 5 5
4 3 3
4 1 1
4 2 2