#P552D. Vanya and Triangles

    ID: 7338 Type: RemoteJudge 4000ms 512MiB Tried: 0 Accepted: 0 Difficulty: 6 Uploaded By: Tags>brute forcecombinatoricsdata structuresgeometrymathsortings*1900

Vanya and Triangles

Description

Vanya got bored and he painted n distinct points on the plane. After that he connected all the points pairwise and saw that as a result many triangles were formed with vertices in the painted points. He asks you to count the number of the formed triangles with the non-zero area.

The first line contains integer n (1 ≤ n ≤ 2000) — the number of the points painted on the plane.

Next n lines contain two integers each xi, yi ( - 100 ≤ xi, yi ≤ 100) — the coordinates of the i-th point. It is guaranteed that no two given points coincide.

In the first line print an integer — the number of triangles with the non-zero area among the painted points.

Input

The first line contains integer n (1 ≤ n ≤ 2000) — the number of the points painted on the plane.

Next n lines contain two integers each xi, yi ( - 100 ≤ xi, yi ≤ 100) — the coordinates of the i-th point. It is guaranteed that no two given points coincide.

Output

In the first line print an integer — the number of triangles with the non-zero area among the painted points.

4
0 0
1 1
2 0
2 2

3
0 0
1 1
2 0

1
1 1

3

1

0

Note

Note to the first sample test. There are 3 triangles formed: (0, 0) - (1, 1) - (2, 0); (0, 0) - (2, 2) - (2, 0); (1, 1) - (2, 2) - (2, 0).

Note to the second sample test. There is 1 triangle formed: (0, 0) - (1, 1) - (2, 0).

Note to the third sample test. A single point doesn't form a single triangle.