#P263D. Cycle in Graph
Cycle in Graph
Description
You've got a undirected graph G, consisting of n nodes. We will consider the nodes of the graph indexed by integers from 1 to n. We know that each node of graph G is connected by edges with at least k other nodes of this graph. Your task is to find in the given graph a simple cycle of length of at least k + 1.
A simple cycle of length d (d > 1) in graph G is a sequence of distinct graph nodes v1, v2, ..., vd such, that nodes v1 and vd are connected by an edge of the graph, also for any integer i (1 ≤ i < d) nodes vi and vi + 1 are connected by an edge of the graph.
The first line contains three integers n, m, k (3 ≤ n, m ≤ 105; 2 ≤ k ≤ n - 1) — the number of the nodes of the graph, the number of the graph's edges and the lower limit on the degree of the graph node. Next m lines contain pairs of integers. The i-th line contains integers ai, bi (1 ≤ ai, bi ≤ n; ai ≠ bi) — the indexes of the graph nodes that are connected by the i-th edge.
It is guaranteed that the given graph doesn't contain any multiple edges or self-loops. It is guaranteed that each node of the graph is connected by the edges with at least k other nodes of the graph.
In the first line print integer r (r ≥ k + 1) — the length of the found cycle. In the next line print r distinct integers v1, v2, ..., vr (1 ≤ vi ≤ n) — the found simple cycle.
It is guaranteed that the answer exists. If there are multiple correct answers, you are allowed to print any of them.
Input
The first line contains three integers n, m, k (3 ≤ n, m ≤ 105; 2 ≤ k ≤ n - 1) — the number of the nodes of the graph, the number of the graph's edges and the lower limit on the degree of the graph node. Next m lines contain pairs of integers. The i-th line contains integers ai, bi (1 ≤ ai, bi ≤ n; ai ≠ bi) — the indexes of the graph nodes that are connected by the i-th edge.
It is guaranteed that the given graph doesn't contain any multiple edges or self-loops. It is guaranteed that each node of the graph is connected by the edges with at least k other nodes of the graph.
Output
In the first line print integer r (r ≥ k + 1) — the length of the found cycle. In the next line print r distinct integers v1, v2, ..., vr (1 ≤ vi ≤ n) — the found simple cycle.
It is guaranteed that the answer exists. If there are multiple correct answers, you are allowed to print any of them.
3 3 2
1 2
2 3
3 1
4 6 3
4 3
1 2
1 3
1 4
2 3
2 4
3
1 2 3
4
3 4 1 2