#P236B. Easy Number Challenge

    ID: 8636 Type: RemoteJudge 2000ms 256MiB Tried: 0 Accepted: 0 Difficulty: 4 Uploaded By: Tags>implementationnumber theory*1300

Easy Number Challenge

Description

Let's denote d(n) as the number of divisors of a positive integer n. You are given three integers a, b and c. Your task is to calculate the following sum:

Find the sum modulo 1073741824 (230).

The first line contains three space-separated integers a, b and c (1 ≤ a, b, c ≤ 100).

Print a single integer — the required sum modulo 1073741824 (230).

Input

The first line contains three space-separated integers a, b and c (1 ≤ a, b, c ≤ 100).

Output

Print a single integer — the required sum modulo 1073741824 (230).

2 2 2

5 6 7

20

1520

Note

For the first example.

  • d(1·1·1) = d(1) = 1;
  • d(1·1·2) = d(2) = 2;
  • d(1·2·1) = d(2) = 2;
  • d(1·2·2) = d(4) = 3;
  • d(2·1·1) = d(2) = 2;
  • d(2·1·2) = d(4) = 3;
  • d(2·2·1) = d(4) = 3;
  • d(2·2·2) = d(8) = 4.

So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.