#P1952E. Sweep Line
Sweep Line
Description
The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the length of the array $a$.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_i \leq 2$) — the array $a$.
Output a single integer — the number of solutions, modulo $20240401$.
Input
The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the length of the array $a$.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \leq a_i \leq 2$) — the array $a$.
Output
Output a single integer — the number of solutions, modulo $20240401$.
7
1 1 2 1 1 2 0
7
1 1 2 1 1 1 0
7
0 1 2 1 1 1 0
1
2
0
Note
In the first sample, the array looks like this:
$ \color{blue}{1} $ | $ \color{blue}{1} $ | $ \color{darkgreen}{2} $ | $ \color{blue}{1} $ | $ \color{blue}{1} $ | $ \color{darkgreen}{2} $ | $ \color{gray}{0} $ |
Obviously, the answer here is $1 \pmod{20240401}$.
In the second sample, the array looks like this:
$ \color{blue}{1} $ | $ \color{blue}{1} $ | $ \color{darkgreen}{2} $ | $ \color{blue}{1} $ | $ \color{blue}{1} $ | $ \color{blue}{1} $ | $ \color{gray}{0} $ |
I do not know why the answer here is $2 \pmod{20240401}$, I had to take a guess.
In the third sample, the array looks like this:
$ \color{gray}{0} $ | $ \color{blue}{1} $ | $ \color{darkgreen}{2} $ | $ \color{blue}{1} $ | $ \color{blue}{1} $ | $ \color{blue}{1} $ | $ \color{gray}{0} $ |
If the answer here is not $0 \pmod{20240401}$, I am literally going to explode.