#P1910H. Sum of Digits of Sums
Sum of Digits of Sums
Description
You are given an array $[a_1, a_2, \dots, a_n]$, consisting of positive integers.
For every $i$ from $1$ to $n$, calculate $\sum \limits_{j=1}^{n} F(a_i + a_j)$, where $F(x)$ is the sum of digits of $x$.
The first line contains one integer $n$ ($2 \le n \le 2 \cdot 10^5$).
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i < 10^9$).
Print $n$ integers. The $i$-th of them should be equal to $\sum \limits_{j=1}^{n} F(a_i + a_j)$.
Input
The first line contains one integer $n$ ($2 \le n \le 2 \cdot 10^5$).
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i < 10^9$).
Output
Print $n$ integers. The $i$-th of them should be equal to $\sum \limits_{j=1}^{n} F(a_i + a_j)$.
4
1 3 3 7
3
42 1337 999
18 17 17 15
38 53 47