#P1895F. Fancy Arrays
Fancy Arrays
Description
Let's call an array $a$ of $n$ non-negative integers fancy if the following conditions hold:
- at least one from the numbers $x$, $x + 1$, ..., $x+k-1$ appears in the array;
- consecutive elements of the array differ by at most $k$ (i.e. $|a_i-a_{i-1}| \le k$ for each $i \in [2, n]$).
You are given $n$, $x$ and $k$. Your task is to calculate the number of fancy arrays of length $n$. Since the answer can be large, print it modulo $10^9+7$.
The first line contains a single integer $t$ ($1 \le t \le 50$) — the number of test cases.
The only line of each test case contains three integers $n$, $x$ and $k$ ($1 \le n, k \le 10^9$; $0 \le x \le 40$).
For each test case, print a single integer — the number of fancy arrays of length $n$, taken modulo $10^9+7$.
Input
The first line contains a single integer $t$ ($1 \le t \le 50$) — the number of test cases.
The only line of each test case contains three integers $n$, $x$ and $k$ ($1 \le n, k \le 10^9$; $0 \le x \le 40$).
Output
For each test case, print a single integer — the number of fancy arrays of length $n$, taken modulo $10^9+7$.
4
3 0 1
1 4 25
4 7 2
1000000000 40 1000000000
9
25
582
514035484
Note
In the first test case of the example, the following arrays are fancy:
- $[0, 0, 0]$;
- $[0, 0, 1]$;
- $[0, 1, 0]$;
- $[0, 1, 1]$;
- $[0, 1, 2]$;
- $[1, 0, 0]$;
- $[1, 0, 1]$;
- $[1, 1, 0]$;
- $[2, 1, 0]$.