#P1849E. Max to the Right of Min

    ID: 9958 Type: RemoteJudge 3000ms 256MiB Tried: 0 Accepted: 0 Difficulty: (None) Uploaded By: Tags>binary searchdata structuresdivide and conquerdpdsutwo pointers

Max to the Right of Min

Description

You are given a permutation $p$ of length $n$ — an array, consisting of integers from $1$ to $n$, all distinct.

Let $p_{l,r}$ denote a subarray — an array formed by writing down elements from index $l$ to index $r$, inclusive.

Let $\mathit{maxpos}_{l,r}$ denote the index of the maximum element on $p_{l,r}$. Similarly, let $\mathit{minpos}_{l,r}$ denote the index of the minimum element on it.

Calculate the number of subarrays $p_{l,r}$ such that $\mathit{maxpos}_{l,r} > \mathit{minpos}_{l,r}$.

The first line contains a single integer $n$ ($1 \le n \le 10^6$) — the number of elements in the permutation.

The second line contains $n$ integers $p_1, p_2, \dots, p_n$ ($1 \le p_i \le n$). All $p_i$ are distinct.

Print a single integer — the number of subarrays $p_{l,r}$ such that $\mathit{maxpos}_{l,r} > \mathit{minpos}_{l,r}$.

Input

The first line contains a single integer $n$ ($1 \le n \le 10^6$) — the number of elements in the permutation.

The second line contains $n$ integers $p_1, p_2, \dots, p_n$ ($1 \le p_i \le n$). All $p_i$ are distinct.

Output

Print a single integer — the number of subarrays $p_{l,r}$ such that $\mathit{maxpos}_{l,r} > \mathit{minpos}_{l,r}$.

3
1 2 3
6
5 3 6 1 4 2
10
5 1 6 2 8 3 4 10 9 7
3
4
38