#F. Strange Triples

    Type: RemoteJudge 10000ms 256MiB

Strange Triples

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

Description

Let's call a triple of positive integers ($a, b, n$) strange if the equality $\frac{an}{nb} = \frac{a}{b}$ holds, where $an$ is the concatenation of $a$ and $n$ and $nb$ is the concatenation of $n$ and $b$. For the purpose of concatenation, the integers are considered without leading zeroes.

For example, if $a = 1$, $b = 5$ and $n = 9$, then the triple is strange, because $\frac{19}{95} = \frac{1}{5}$. But $a = 7$, $b = 3$ and $n = 11$ is not strange, because $\frac{711}{113} \ne \frac{7}{3}$.

You are given three integers $A$, $B$ and $N$. Calculate the number of strange triples $(a, b, n$), such that $1 \le a < A$, $1 \le b < B$ and $1 \le n < N$.

The only line contains three integers $A$, $B$ and $N$ ($1 \le A, B \le 10^5$; $1 \le N \le 10^9$).

Print one integer — the number of strange triples $(a, b, n$) such that $1 \le a < A$, $1 \le b < B$ and $1 \le n < N$.

Input

The only line contains three integers $A$, $B$ and $N$ ($1 \le A, B \le 10^5$; $1 \le N \le 10^9$).

Output

Print one integer — the number of strange triples $(a, b, n$) such that $1 \le a < A$, $1 \le b < B$ and $1 \le n < N$.

5 6 10
10 10 100
1 10 25
4242 6969 133333337
94841 47471 581818184
7
29
0
19536
98715

Note

In the first example, there are $7$ strange triples: $(1, 1, 1$), ($1, 4, 6$), ($1, 5, 9$), ($2, 2, 2$), ($2, 5, 6$), ($3, 3, 3$) and ($4, 4, 4$).

CF1796

Not Claimed
Status
Done
Problem
6
Open Since
2023-6-15 16:15
Deadline
2023-6-15 17:15
Extension
0 hour(s)