#P1761D. Carry Bit
Carry Bit
Description
Let $f(x,y)$ be the number of carries of $x+y$ in binary (i. e. $f(x,y)=g(x)+g(y)-g(x+y)$, where $g(x)$ is the number of ones in the binary representation of $x$).
Given two integers $n$ and $k$, find the number of ordered pairs $(a,b)$ such that $0 \leq a,b < 2^n$, and $f(a,b)$ equals $k$. Note that for $a\ne b$, $(a,b)$ and $(b,a)$ are considered as two different pairs.
As this number may be large, output it modulo $10^9+7$.
The only line of each test contains two integers $n$ and $k$ ($0\leq k<n\leq 10^6$).
Output a single integer — the answer modulo $10^9+7$.
Input
The only line of each test contains two integers $n$ and $k$ ($0\leq k<n\leq 10^6$).
Output
Output a single integer — the answer modulo $10^9+7$.
3 1
3 0
998 244
15
27
573035660
Note
Here are some examples for understanding carries:
$$ \begin{aligned} &\begin{array}{r} 1_{\ \ }1_{\ \ }1\\ +\ _{1}1_{\ \ }0_{\ \ }0\\ \hline \ 1_{\ \ }0_{\ \ }1_{\ \ }1 \end{array} &\begin{array}{r} \ 1_{\ \ }0_{\ \ }1\\ +\ _{\ \ }0_{\ \ }0_{1}1\\ \hline \ 0_{\ \ }1_{\ \ }1_{\ \ }0 \end{array} & &\begin{array}{r} \ 1_{\ \ }0_{\ \ }1\\ +\ _{1}0_{1}1_{1}1\\ \hline \ 1_{\ \ }0_{\ \ }0_{\ \ }0 \end{array} \end{aligned} $$
So $f(7,4)=1$, $f(5,1)=1$ and $f(5,3)=3$.
In the first test case, all the pairs meeting the constraints are $(1,1),(1,5),(2,2),(2,3),(3,2),(4,4),(4,5),(4,6),(4,7),(5,1),(5,4),(5,6),(6,4),(6,5),(7,4)$.