#P1728D. Letter Picking

    ID: 821 Type: RemoteJudge 2000ms 512MiB Tried: 0 Accepted: 0 Difficulty: 6 Uploaded By: Tags>constructive algorithmsdpgamestwo pointers*1800

Letter Picking

Description

Alice and Bob are playing a game. Initially, they are given a non-empty string $s$, consisting of lowercase Latin letters. The length of the string is even. Each player also has a string of their own, initially empty.

Alice starts, then they alternate moves. In one move, a player takes either the first or the last letter of the string $s$, removes it from $s$ and prepends (adds to the beginning) it to their own string.

The game ends when the string $s$ becomes empty. The winner is the player with a lexicographically smaller string. If the players' strings are equal, then it's a draw.

A string $a$ is lexicographically smaller than a string $b$ if there exists such position $i$ that $a_j = b_j$ for all $j < i$ and $a_i < b_i$.

What is the result of the game if both players play optimally (e. g. both players try to win; if they can't, then try to draw)?

The first line contains a single integer $t$ ($1 \le t \le 1000$) — the number of testcases.

Each testcase consists of a single line — a non-empty string $s$, consisting of lowercase Latin letters. The length of the string $s$ is even.

The total length of the strings over all testcases doesn't exceed $2000$.

For each testcase, print the result of the game if both players play optimally. If Alice wins, print "Alice". If Bob wins, print "Bob". If it's a draw, print "Draw".

Input

The first line contains a single integer $t$ ($1 \le t \le 1000$) — the number of testcases.

Each testcase consists of a single line — a non-empty string $s$, consisting of lowercase Latin letters. The length of the string $s$ is even.

The total length of the strings over all testcases doesn't exceed $2000$.

Output

For each testcase, print the result of the game if both players play optimally. If Alice wins, print "Alice". If Bob wins, print "Bob". If it's a draw, print "Draw".

2
forces
abba
Alice
Draw

Note

One of the possible games Alice and Bob can play in the first testcase:

  1. Alice picks the first letter in $s$: $s=$"orces", $a=$"f", $b=$"";
  2. Bob picks the last letter in $s$: $s=$"orce", $a=$"f", $b=$"s";
  3. Alice picks the last letter in $s$: $s=$"orc", $a=$"ef", $b=$"s";
  4. Bob picks the first letter in $s$: $s=$"rc", $a=$"ef", $b=$"os";
  5. Alice picks the last letter in $s$: $s=$"r", $a=$"cef", $b=$"os";
  6. Bob picks the remaining letter in $s$: $s=$"", $a=$"cef", $b=$"ros".

Alice wins because "cef" < "ros". Neither of the players follows any strategy in this particular example game, so it doesn't show that Alice wins if both play optimally.