#P1684G. Euclid Guess

    ID: 1116 Type: RemoteJudge 1000ms 256MiB Tried: 0 Accepted: 0 Difficulty: 10 Uploaded By: Tags>constructive algorithmsflowsgraph matchingsmathnumber theory*2800

Euclid Guess

Description

Let's consider Euclid's algorithm for finding the greatest common divisor, where $t$ is a list:


function Euclid(a, b):
if a < b:
swap(a, b)

if b == 0:
return a

r = reminder from dividing a by b
if r > 0:
append r to the back of t

return Euclid(b, r)

There is an array $p$ of pairs of positive integers that are not greater than $m$. Initially, the list $t$ is empty. Then the function is run on each pair in $p$. After that the list $t$ is shuffled and given to you.

You have to find an array $p$ of any size not greater than $2 \cdot 10^4$ that produces the given list $t$, or tell that no such array exists.

The first line contains two integers $n$ and $m$ ($1 \le n \le 10^3$, $1 \le m \le 10^9$) — the length of the array $t$ and the constraint for integers in pairs.

The second line contains $n$ integers $t_1, t_2, \ldots, t_n$ ($1 \le t_i \le m$) — the elements of the array $t$.

  • If the answer does not exist, output $-1$.
  • If the answer exists, in the first line output $k$ ($1 \le k \le 2 \cdot 10^4$) — the size of your array $p$, i. e. the number of pairs in the answer.

    The $i$-th of the next $k$ lines should contain two integers $a_i$ and $b_i$ ($1 \le a_i, b_i \le m$) — the $i$-th pair in $p$.

If there are multiple valid answers you can output any of them.

Input

The first line contains two integers $n$ and $m$ ($1 \le n \le 10^3$, $1 \le m \le 10^9$) — the length of the array $t$ and the constraint for integers in pairs.

The second line contains $n$ integers $t_1, t_2, \ldots, t_n$ ($1 \le t_i \le m$) — the elements of the array $t$.

Output

  • If the answer does not exist, output $-1$.
  • If the answer exists, in the first line output $k$ ($1 \le k \le 2 \cdot 10^4$) — the size of your array $p$, i. e. the number of pairs in the answer.

    The $i$-th of the next $k$ lines should contain two integers $a_i$ and $b_i$ ($1 \le a_i, b_i \le m$) — the $i$-th pair in $p$.

If there are multiple valid answers you can output any of them.

7 20
1 8 1 6 3 2 3
2 10
7 1
2 15
1 7
1 1000000000
845063470
3
19 11
15 9
3 7
-1
1
15 8
-1

Note

In the first sample let's consider the array $t$ for each pair:

  • $(19,\, 11)$: $t = [8, 3, 2, 1]$;
  • $(15,\, 9)$: $t = [6, 3]$;
  • $(3,\, 7)$: $t = [1]$.

So in total $t = [8, 3, 2, 1, 6, 3, 1]$, which is the same as the input $t$ (up to a permutation).

In the second test case it is impossible to find such array $p$ of pairs that all integers are not greater than $10$ and $t = [7, 1]$

In the third test case for the pair $(15,\, 8)$ array $t$ will be $[7, 1]$.