#P1608F. MEX counting
MEX counting
Description
For an array $c$ of nonnegative integers, $MEX(c)$ denotes the smallest nonnegative integer that doesn't appear in it. For example, $MEX([0, 1, 3]) = 2$, $MEX([42]) = 0$.
You are given integers $n, k$, and an array $[b_1, b_2, \ldots, b_n]$.
Find the number of arrays $[a_1, a_2, \ldots, a_n]$, for which the following conditions hold:
$0 \le a_i \le n$ for each $i$ for each $i$ from $1$ to $n$.
$|MEX([a_1, a_2, \ldots, a_i]) - b_i| \le k$ for each $i$ from $1$ to $n$.
As this number can be very big, output it modulo $998\,244\,353$.
The first line of the input contains two integers $n, k$ ($1 \le n \le 2000$, $0 \le k \le 50$).
The second line of the input contains $n$ integers $b_1, b_2, \ldots, b_n$ ($-k \le b_i \le n+k$) — elements of the array $b$.
Output a single integer — the number of arrays which satisfy the conditions from the statement, modulo $998\,244\,353$.
Input
The first line of the input contains two integers $n, k$ ($1 \le n \le 2000$, $0 \le k \le 50$).
The second line of the input contains $n$ integers $b_1, b_2, \ldots, b_n$ ($-k \le b_i \le n+k$) — elements of the array $b$.
Output
Output a single integer — the number of arrays which satisfy the conditions from the statement, modulo $998\,244\,353$.
4 0
0 0 0 0
4 1
0 0 0 0
4 1
0 0 1 1
5 2
0 0 2 2 0
3 2
-2 0 4
256
431
509
6546
11