#P1585F. Non-equal Neighbours
Non-equal Neighbours
Description
You are given an array of $n$ positive integers $a_1, a_2, \ldots, a_n$. Your task is to calculate the number of arrays of $n$ positive integers $b_1, b_2, \ldots, b_n$ such that:
- $1 \le b_i \le a_i$ for every $i$ ($1 \le i \le n$), and
- $b_i \neq b_{i+1}$ for every $i$ ($1 \le i \le n - 1$).
The number of such arrays can be very large, so print it modulo $998\,244\,353$.
The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the array $a$.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$).
Print the answer modulo $998\,244\,353$ in a single line.
Input
The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of the array $a$.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$).
Output
Print the answer modulo $998\,244\,353$ in a single line.
3
2 2 2
2
2 3
3
1 1 1
2
4
0
Note
In the first test case possible arrays are $[1, 2, 1]$ and $[2, 1, 2]$.
In the second test case possible arrays are $[1, 2]$, $[1, 3]$, $[2, 1]$ and $[2, 3]$.