#P1493D. GCD of an Array
GCD of an Array
Description
You are given an array $a$ of length $n$. You are asked to process $q$ queries of the following format: given integers $i$ and $x$, multiply $a_i$ by $x$.
After processing each query you need to output the greatest common divisor (GCD) of all elements of the array $a$.
Since the answer can be too large, you are asked to output it modulo $10^9+7$.
The first line contains two integers — $n$ and $q$ ($1 \le n, q \le 2 \cdot 10^5$).
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$) — the elements of the array $a$ before the changes.
The next $q$ lines contain queries in the following format: each line contains two integers $i$ and $x$ ($1 \le i \le n$, $1 \le x \le 2 \cdot 10^5$).
Print $q$ lines: after processing each query output the GCD of all elements modulo $10^9+7$ on a separate line.
Input
The first line contains two integers — $n$ and $q$ ($1 \le n, q \le 2 \cdot 10^5$).
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$) — the elements of the array $a$ before the changes.
The next $q$ lines contain queries in the following format: each line contains two integers $i$ and $x$ ($1 \le i \le n$, $1 \le x \le 2 \cdot 10^5$).
Output
Print $q$ lines: after processing each query output the GCD of all elements modulo $10^9+7$ on a separate line.
4 3
1 6 8 12
1 12
2 3
3 3
2
2
6
Note
After the first query the array is $[12, 6, 8, 12]$, $\operatorname{gcd}(12, 6, 8, 12) = 2$.
After the second query — $[12, 18, 8, 12]$, $\operatorname{gcd}(12, 18, 8, 12) = 2$.
After the third query — $[12, 18, 24, 12]$, $\operatorname{gcd}(12, 18, 24, 12) = 6$.
Here the $\operatorname{gcd}$ function denotes the greatest common divisor.