#P1479B2. Painting the Array II

    ID: 2539 Type: RemoteJudge 2000ms 512MiB Tried: 0 Accepted: 0 Difficulty: 7 Uploaded By: Tags>constructive algorithmsdata structuresdpgreedyimplementation*2100

Painting the Array II

Description

The only difference between the two versions is that this version asks the minimal possible answer.

Homer likes arrays a lot. Today he is painting an array $a_1, a_2, \dots, a_n$ with two kinds of colors, white and black. A painting assignment for $a_1, a_2, \dots, a_n$ is described by an array $b_1, b_2, \dots, b_n$ that $b_i$ indicates the color of $a_i$ ($0$ for white and $1$ for black).

According to a painting assignment $b_1, b_2, \dots, b_n$, the array $a$ is split into two new arrays $a^{(0)}$ and $a^{(1)}$, where $a^{(0)}$ is the sub-sequence of all white elements in $a$ and $a^{(1)}$ is the sub-sequence of all black elements in $a$. For example, if $a = [1,2,3,4,5,6]$ and $b = [0,1,0,1,0,0]$, then $a^{(0)} = [1,3,5,6]$ and $a^{(1)} = [2,4]$.

The number of segments in an array $c_1, c_2, \dots, c_k$, denoted $\mathit{seg}(c)$, is the number of elements if we merge all adjacent elements with the same value in $c$. For example, the number of segments in $[1,1,2,2,3,3,3,2]$ is $4$, because the array will become $[1,2,3,2]$ after merging adjacent elements with the same value. Especially, the number of segments in an empty array is $0$.

Homer wants to find a painting assignment $b$, according to which the number of segments in both $a^{(0)}$ and $a^{(1)}$, i.e. $\mathit{seg}(a^{(0)})+\mathit{seg}(a^{(1)})$, is as small as possible. Find this number.

The first line contains an integer $n$ ($1 \leq n \leq 10^5$).

The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq n$).

Output a single integer, indicating the minimal possible total number of segments.

Input

The first line contains an integer $n$ ($1 \leq n \leq 10^5$).

The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq n$).

Output

Output a single integer, indicating the minimal possible total number of segments.

6
1 2 3 1 2 2
7
1 2 1 2 1 2 1
4
2

Note

In the first example, we can choose $a^{(0)} = [1,1,2,2]$, $a^{(1)} = [2,3]$ and $\mathit{seg}(a^{(0)}) = \mathit{seg}(a^{(1)}) = 2$. So the answer is $2+2 = 4$.

In the second example, we can choose $a^{(0)} = [1,1,1,1]$, $a^{(1)} = [2,2,2]$ and $\mathit{seg}(a^{(0)}) = \mathit{seg}(a^{(1)}) = 1$. So the answer is $1+1 = 2$.