#P1468I. Plane Tiling

    ID: 2650 Type: RemoteJudge 1000ms 512MiB Tried: 0 Accepted: 0 Difficulty: 9 Uploaded By: Tags>geometryimplementationmath*2500

Plane Tiling

Description

You are given five integers $n$, $dx_1$, $dy_1$, $dx_2$ and $dy_2$. You have to select $n$ distinct pairs of integers $(x_i, y_i)$ in such a way that, for every possible pair of integers $(x, y)$, there exists exactly one triple of integers $(a, b, i)$ meeting the following constraints:

$ \begin{cases} x \, = \, x_i + a \cdot dx_1 + b \cdot dx_2, \\ y \, = \, y_i + a \cdot dy_1 + b \cdot dy_2. \end{cases} $

The first line contains a single integer $n$ ($1 \le n \le 10^5$).

The second line contains two integers $dx_1$ and $dy_1$ ($-10^6 \le dx_1, dy_1 \le 10^6$).

The third line contains two integers $dx_2$ and $dy_2$ ($-10^6 \le dx_2, dy_2 \le 10^6$).

If it is impossible to correctly select $n$ pairs of integers, print NO.

Otherwise, print YES in the first line, and then $n$ lines, the $i$-th of which contains two integers $x_i$ and $y_i$ ($-10^9 \le x_i, y_i \le 10^9$).

If there are multiple solutions, print any of them.

Input

The first line contains a single integer $n$ ($1 \le n \le 10^5$).

The second line contains two integers $dx_1$ and $dy_1$ ($-10^6 \le dx_1, dy_1 \le 10^6$).

The third line contains two integers $dx_2$ and $dy_2$ ($-10^6 \le dx_2, dy_2 \le 10^6$).

Output

If it is impossible to correctly select $n$ pairs of integers, print NO.

Otherwise, print YES in the first line, and then $n$ lines, the $i$-th of which contains two integers $x_i$ and $y_i$ ($-10^9 \le x_i, y_i \le 10^9$).

If there are multiple solutions, print any of them.

4
2 0
0 2
5
2 6
1 5
2
3 4
1 2
YES
0 0
0 1
1 0
1 1
NO
YES
0 0
0 1