#P1159B. Expansion coefficient of the array

Expansion coefficient of the array

Description

Let's call an array of non-negative integers $a_1, a_2, \ldots, a_n$ a $k$-extension for some non-negative integer $k$ if for all possible pairs of indices $1 \leq i, j \leq n$ the inequality $k \cdot |i - j| \leq min(a_i, a_j)$ is satisfied. The expansion coefficient of the array $a$ is the maximal integer $k$ such that the array $a$ is a $k$-extension. Any array is a 0-expansion, so the expansion coefficient always exists.

You are given an array of non-negative integers $a_1, a_2, \ldots, a_n$. Find its expansion coefficient.

The first line contains one positive integer $n$ — the number of elements in the array $a$ ($2 \leq n \leq 300\,000$). The next line contains $n$ non-negative integers $a_1, a_2, \ldots, a_n$, separated by spaces ($0 \leq a_i \leq 10^9$).

Print one non-negative integer — expansion coefficient of the array $a_1, a_2, \ldots, a_n$.

Input

The first line contains one positive integer $n$ — the number of elements in the array $a$ ($2 \leq n \leq 300\,000$). The next line contains $n$ non-negative integers $a_1, a_2, \ldots, a_n$, separated by spaces ($0 \leq a_i \leq 10^9$).

Output

Print one non-negative integer — expansion coefficient of the array $a_1, a_2, \ldots, a_n$.

4
6 4 5 5
3
0 1 2
4
821 500 479 717
1
0
239

Note

In the first test, the expansion coefficient of the array $[6, 4, 5, 5]$ is equal to $1$ because $|i-j| \leq min(a_i, a_j)$, because all elements of the array satisfy $a_i \geq 3$. On the other hand, this array isn't a $2$-extension, because $6 = 2 \cdot |1 - 4| \leq min(a_1, a_4) = 5$ is false.

In the second test, the expansion coefficient of the array $[0, 1, 2]$ is equal to $0$ because this array is not a $1$-extension, but it is $0$-extension.