引理
$$\lim\limits_{x \to \infty}(1 + \frac{1}{x}) ^ x = e\\
\lim\limits_{x \to 0}\sin{x} = x\\
$$
开证
f(x)=ax
$${f}'(x) = \lim\limits_{\Delta{x} \to 0}\frac{{f}(x + \Delta{x}) - {f}(x)}{\Delta{x}}\\
= \lim\limits_{\Delta{x} \to 0}\frac{a ^ {x + \Delta{x}} - a ^ x}{\Delta{x}}\\
= a ^ x\lim\limits_{\Delta{x} \to 0}\frac{a ^ {\Delta{x}} - 1}{\Delta{x}}
$$
令t=aΔx−1
∴Δx=loga1+t
$$\therefore 1 + \frac{\Delta{x}}{x} = (t + 1)^{\frac{1}{a}}
$$$$\therefore 原式 = a ^ x\lim\limits_{t \to 0}\frac{t}{\log_a{(1 + t)}}\\
= a ^ x\lim\limits_{t \to 0}\frac{1}{\frac{1}{t}\log_a{(1 + t)}}\\
= a ^ x\lim\limits_{t \to 0}\frac{1}{\log_a{(1 + t)} ^ \frac{1}{t}}\\
= a ^ x \frac{1}{\log_a{e}}\\
= a ^ x \ln a
$$